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Abstract

Let G be a connected graph. The core of G, denoted by G∆, is the
subgraph of G induced by the vertices of maximum degree. Hilton and
Zhao [On the edge-colouring of graphs whose core has maximum degree

two, JCMCC 21 (1996), 97-108] conjectured that, if ∆(G∆) ≤ 2, then G

is Class 2 if and only if G is overfull, with the sole exception of the Petersen
graph with one vertex deleted. In this paper we prove this conjecture for
all graphs G of even order such that |V (G∆)| > max{ 1

2
|V (G)|, |V (G)| −

2∆(G) + 5}.
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1 Introduction

All graphs considered in this paper are finite and simple. The vertex and edge
set of a graph G will be denoted by V (G) and E(G), respectively. If G is a
graph and S ⊆ V (G), by N(S) we denote the set of vertices of G which are
adjacent to at least one vertex in S. If H is a subgraph of G we denote this by
H ⊆ G.

The core of G, denoted by G∆, is the subgraph of G induced by the set
of vertices of maximum degree. For graph theoretic terminology not explicitly
defined here, we refer the reader to [4].

An edge colouring of a graph G is a map ϕ : E(G) → C, where C is a
set, called the colour set, and ϕ(e1) 6= ϕ(e2) for any pair (e1, e2) of distinct
mutually incident edges of G. The minimum cardinality of the colour set in an
edge colouring of G is called the chromatic index of G and denoted by χ′(G).

Vizing [13] proved that, for any graph G, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.
Accordingly, we say that G is Class 1 if χ′(G) = ∆(G) and Class 2 if χ′(G) =
∆(G) + 1. G is called critical if it is Class 2, connected and, for every edge
e ∈ E(G), χ′(G − e) < χ′(G).

A graph G is overfull if |E(G)| > ∆(G) · b |V (G)|
2 c. It is easy to see that every

overfull graph is Class 2. However the converse of this statement is not true,
and it is very difficult in general to determine whether a given graph is Class 2
(or Class 1).

Fournier [5] proved that, if the core of G contains no cycles, then G is Class
1. It is natural to ask what can be said about G if G∆ is indeed (isomorphic
to) a cycle or, more generally, if it consists of vertex disjoint cycles and paths.

Let P ∗ denote the Petersen graph with one vertex deleted. Then P ∗ provides
an example of a Class 2 graph whose core is a 6-cycle. Thus Fournier’s result
does not extend to graphs whose core is a cycle.

However Hilton and Zhao [9] have posed the following conjecture, which
attributes to P ∗ an exceptional property among all connected graphs whose
core has maximum degree at most two.

Conjecture 1 Let G be a connected graph such that ∆(G∆) ≤ 2. Then G is

Class 2 if and only if G is overfull, unless G ≈ P ∗.

Hilton and Zhao [7] proved the above conjecture for all graphs G such that
∆(G) ≥ 1

2 (|V (G)| + 3). This bound has been recently improved to ∆(G) ≥
1
2 (|V (G)|−1) by Koh and Song [10]. Hilton and Zhao [8] also proved Conjecture1
for all graphs G such that ∆(G) ≥ |V (G)|−|V (G∆)|. Further progress was made
by Hilton and Zhao in [9], where the conjecture was proved for all graphs G such
that |V (G)| ≥ 2k2 + 32

3 k + 47
3 if |V (G)| is even and |V (G)| ≥ 3k2 + 12k + 16 if

|V (G)| is odd, where ∆(G) = |V (G)| − |V (G∆)| − k ≥ k + 5.
G. Cariolaro and the present first author settled the case ∆(G) = 3 of

Conjecture1 using a colour-exchange technique [1].
From the classification of all critical graphs with at most five vertices of

maximum degree due to Chetwynd and Hilton [2, 3], Song [11] and Song and

2



Yap [12], and Lemma 1 below, it also follows that Conjecture 1 holds for all
graphs with |V (G∆)| ≤ 5.

The purpose of the present paper is to prove the following result:

Theorem 1 Let G be a connected graph of even order such that ∆(G∆) ≤ 2
and |V (G∆)| > max{ 1

2 |V (G)|, |V (G)| − 2∆(G) + 5}. Then G is Class 2 if and

only if G is overfull.

This improves, for graphs of even order such that |V (G∆)| > 1
2 |V (G)|, the

Hilton and Zhao [8] and Koh and Song [10] bounds by almost a factor of 2.

2 Preliminary lemmas

The following two important lemmas were established by Hilton and Zhao in
[7].

Lemma 1 Let G be a connected Class 2 graph with ∆(G∆) ≤ 2. Then:

1. G is critical;

2. δ(G∆) = 2;

3. δ(G) = ∆(G) − 1, unless G is an odd cycle;

4. N(G∆) = V (G).

Lemma 2 Let G be a connected overfull graph, which is not an odd cycle,

such that ∆(G∆) ≤ 2. Then

∆(G) ≥
1

2
(|V (G)| + 3).

By Lemma 2 and the fact that Conjecture 1 has been settled for ∆(G) ≥
1
2 (|V (G)| − 1) and for ∆(G) ≤ 3, Conjecture 1 is reduced to the following con-
jecture.

Conjecture 2 Let G be a connected graph such that ∆(G∆) ≤ 2 and 3 <
∆(G) < 1

2 (|V (G)| − 1). Then G is Class 1.

We shall make use, in the proof of Theorem 1, of the following well known
result of P. Hall [6]. Let G be a bipartite graph with bipartition (V1, V2). A
matching M from V1 to V2 will be called complete if each vertex of V1 is incident
with an edge in M .

Lemma 3 A bipartite graph with bipartition (V1, V2) contains a complete

matching from V1 to V2 if and only if

|N(S)| ≥ |S| for every S ⊆ V1. (1)
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We shall refer to the condition (1) above as to Hall’s Condition.
Finally, we shall need the following consequence of the well known Vizing’s

Adjacency Lemma [14].

Lemma 4 Let G be a critical graph and let u ∈ V (G). Then u is adjacent to

at least two vertices of maximum degree of G.

3 Proof of Theorem 1

We now prove Theorem 1.
Proof of Theorem 1: Let ∆ = ∆(G), let p = |V (G∆)| and let q = |V (G)| −
|V (G∆)|. Since Conjecture1 has been reduced to Conjecture2, we may assume
that

4 ≤ ∆ ≤ 1
2 (q + p − 2) . (2)

We argue by contradiction, so suppose that G is Class 2. We shall show that G
has a 1-factor F , and then derive a contradiction. Notice that p + q = |V (G)|
is even by assumption, so that

q ≡ p (mod 2). (3)

From the hypothesis that |V (G∆)| > max{ 1
2 |V (G)|, |V (G)| − 2∆(G) + 5} it

follows that
p > q (4)

and

∆ ≥
1

2
(q + 6). (5)

Let ∂(G∆) denote the set of edges of G with exactly one end in G∆. By
Lemma 1, G∆ is 2-regular, so that

|∂(G∆)| = (∆ − 2)p. (6)

Moreover, by Lemma 1, every non-core vertex has degree ∆ − 1, so that

|∂(G∆)| ≤ (∆ − 1)q, (7)

and comparing (7) with (6), we see that

q(∆ − 1) ≥ p(∆ − 2). (8)

Let β1(G∆) denote the edge-independence number of G∆, i.e. the maximum
number of independent edges in G∆. We show that β1(G∆) ≥ 1

2 (p − q).
By (2), ∆ ≥ 4. Hence ∆ ≥ 5/2, so that

3 ≥
∆ − 1

∆ − 2
. (9)
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By (8) and (9), we have
3q ≥ p. (10)

Hence
1
2q ≥ 1

6p.

Therefore,
1
3p = 1

2p − 1
6p ≥ 1

2 (p − q). (11)

Since G∆ consists of disjoint cycles, and since any cycle of length k has at
least k/3 independent edges, we have

β1(G∆) ≥ 1
3p. (12)

By (11) and (12), we have

β1(G∆) ≥ 1
2 (p − q). (13)

Let S be a set of exactly 1
2 (p− q) independent edges in G∆, which exists by

(13). We say that a vertex is missed by S if it is not incident with any edge in
S. There are obviously exactly q core and q non-core vertices which are missed
by S. Let W = {w1, w2, . . . , wq} and X = {v1, v2, . . . , vq} be, respectively, the
core and non-core vertices missed by S. We show, applying Hall’s Theorem,
that there exists a complete matching1 from W to X . Let Γ(wi), for 1 ≤ i ≤ q,
be the set of non-core neighbours of the vertex wi ∈ W. Notice that, by the
2-regularity of the core,

|Γ(wi)| = ∆ − 2 for all i = 1, 2, . . . , q. (14)

Let A ⊆ W and let Γ =
⋃

wi∈A Γ(wi). By (14), we may assume, in verifying
Hall’s condition, that |A| ≥ ∆ − 1. Suppose that |A| = ∆ − 1. Without loss of
generality, assume A = {w1, w2, . . . , w∆−1}. If Hall’s condition is not satisfied,
then |Γ| = ∆− 2. In that case all vertices of A are adjacent to all vertices in Γ.
By (14), there are exactly (∆−2)(∆−1) = ∆2 −3∆+2 edges from A to Γ. By
Lemma 1, each non-core vertex has degree ∆− 1, so that there are certainly no
more than (∆ − 2)(∆ − 1) edges incident with vertices of Γ in G. Therefore all
the edges incident with vertices of Γ in G join Γ to A. However, since p > q by
(4), we have V (G∆) \ A 6= ∅.

Let v ∈ V (G∆) \A. Since there are ∆− 2 edges joining v to X , this implies
that there are at least ∆ − 2 vertices in X \ Γ, implying

q ≥ 2(∆ − 2),

which contradicts (5).
Hence we are left only with the case that |A| = ∆+t, where t is a nonnegative

integer. Arguing by contradiction, assume that |Γ| < |A|. Let j be the positive
integer defined by the equation

|Γ| = ∆ + t − j.

1Notice that we are using the same idea used by Hilton and Zhao in [7], except that Hall’s
condition is applied to W instead of X.
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There are exactly

(∆ + t)(∆ − 2) = ∆2 + (t − 2)∆ − 2t (15)

edges joining A to Γ. But, by summing the degrees of the vertices of Γ, we see
that the number of edges of G incident with the vertices of Γ cannot exceed

(∆ + t − j)(∆ − 1) = ∆2 + (t − 1 − j)∆ + j − t. (16)

Therefore it is obvious that the quantity in (15) cannot be larger than the
quantity in (16), i.e. that

∆2 + (t − 1 − j)∆ + j − t ≥ ∆2 + (t − 2)∆ − 2t.

Cancelling out and simplifying, we obtain

j(∆ − 1) ≤ ∆ + t. (17)

We cannot have ∆ − 2 ≤ t, otherwise

∆ + t ≥ 2∆ − 2 ≥ q + 4,

contradicting the fact that ∆ + t = |A| ≤ q. Thus

t < ∆ − 2, (18)

and hence
∆ + t < 2∆ − 2 = 2(∆ − 1). (19)

Comparing (17) and (19), and recalling that j is positive, we conclude that
j = 1, so that

|Γ| = ∆ + t − 1. (20)

By (16) and the fact that j = 1, there are no more than

∆2 + (t − 2)∆ + 1 − t (21)

edges incident with Γ in G. Subtracting (15) from (21), we conclude that there
are at most t+1 edges joining Γ to V (G∆)\A. Let w∗ be a vertex in V (G∆)\A,
which exists because p > q by (4).

The vertex w∗ is adjacent to exactly ∆ − 2 non-core vertices, at most t + 1
of which are in Γ. Therefore w∗ is adjacent to at least

∆ − 2 − (t + 1) = ∆ − t − 3 (22)

non-core vertices, none of which is in Γ. From (20) and (22) it follows that

q ≥ (∆ + t − 1) + (∆ − t − 3) = 2∆ − 4,

contradicting inequality (5). Therefore Hall’s condition is satisfied. By Hall’s
Theorem, there exists a complete matching from W to X. Adding S to the edges
of this matching, we obtain the desired 1-factor F of G.
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We now prove that G − F satisfies all the conditions of Lemma 1. Since G
is Class 2, G − F is Class 2, too. Notice that, trivially,

(G − F )∆ ⊆ G∆, (23)

so that ∆((G − F )∆) ≤ 2. Notice also that the inclusion in (23) is strict, since
some edges of F (namely those in S) were specifically chosen to be in E(G∆).

We now prove that G − F is connected. Notice that

V ((G − F )∆) = V (G∆). (24)

Recall that W is the set of core vertices missed by S. Let v1 ∈ V (G∆) \W , and
suppose that there exists v2 ∈ V (G∆) such that v2 lies in a different connected
component of G − F than v1. Since v1 /∈ W and by the identity (24), v1 has
exactly (∆ − 2) non-core neighbours in G − F . By (24) and since v2 is in the
core of G − F , v2 has at least ∆ − 3 non-core neighbours in G − F . Since v1

and v2 are in distinct connected components of G− F, their corresponding sets
of non-core neighbours must be disjoint. By (24), this implies that

(∆ − 2) + (∆ − 3) ≤ q,

contradicting inequality (5). Hence all core-vertices are in the same connected
component of G − F . By Lemma 1, G is critical. By Lemma 4, every vertex of
G is joined by at least two edges to G∆, and since at most one of these edges is
in F, we conclude that every vertex in G − F is joined by at least one edge to
(G − F )∆. This, added to the fact that all vertices in the core of G − F are in
the same connected component of G−F , proves that G−F is connected. Thus
G−F satisfies all the hypotheses of Lemma 1. By Lemma 1, the core of G−F
is 2-regular. But this contradicts the fact that the inclusion (23) is strict, as
observed above, which excludes the core of G − F from being 2-regular. Hence
we have a contradiction, and this contradiction proves that G is Class 1. 2
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