
A graph-theoretical generalization of Berge’s
analogue of the Erdős-Ko-Rado theorem.
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Abstract. A family A of r-subsets of the vertex set V (G) of a graph G is
intersecting if any two of the r-subsets have a non-empty intersection. The
graph G is r-EKR if a largest intersecting family A of independent r-subsets
of V (G) may be obtained by taking all independent r-subsets containing some
particular vertex.

In this paper, we show that if G consists of one path P raised to the
power k0 ≥ 1, and s cycles 1C, 2C, . . . , sC raised to the powers k1, k2, . . . , ks

respectively, with

min
�
ω(1C

k1), ω(2C
k2), . . . , ω(sC

ks)
�
≥ ω(P k0) ≥ 2

where ω(H) denotes the clique number of H, and if G has an independent
r-set (so r is not too large), then G is r-EKR. An intersecting family of the
largest possible size may be found by taking all independent r-subsets of V (G)
containing one of the end-vertices of the path.

1. Introduction

We first discuss the Erdős-Ko-Rado theorem, Berge’s analogue of it, and a recent
further analogue due to Talbot. Then we show that all three can be presented in
a unified way as being a property of some relevant graph. Then we give a much
more general analogue, extending Berge’s result.

1.1. The Erdős-Ko-Rado theorem

The Erdős-Ko-Rado (EKR) theorem [6] of 1961 states that if A is a family of r-
subsets of {1, 2, . . . , n} with r ≤ n/2 such that A is intersecting (that is A1, A2 ∈
A ⇒ A1∩A2 6= ∅), then |A| ≤ (

n−1
r−1

)
. From the Hilton-Milner theorem [9] it follows

that, except if n = r/2, the only way of obtaining the equality |A| =
(
n−1
r−1

)
is by

taking all r-sets containing a common element (but, as Claude Berge observed to
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the first author, this fact can also be determined by a close examination of the
original proof of the EKR theorem).

1.2. Berge’s analogue of the EKR theorem

Let X1, X2, . . . , Xs be finite sets with |Xi| = ki (1 ≤ i ≤ s) and 2 ≤ k1 ≤
k2 ≤ . . . ≤ ks. In 1972 Berge considered the hypergraph, say H0, with vertex set
X1 ∪ X2 ∪ . . . ∪ Xs and (hyper)edge set all k1, k2, . . . , ks subsets {x1, x2, . . . , xs}
with xi ∈ Xi (1 ≤ i ≤ s). The chromatic index q(H) of a hypergraph H is the
smallest number of colours needed to colour the edges of H so that no two edges
with a vertex in common have the same colour. Berge [1] showed that

q(H0) = k2k3 · · · ks.

A corollary of this is the analogue of the EKR theorem mentioned in the title
of this paper. This is that the greatest number of pairwise intersecting hyperedges
in H is the same number, namely k2k3 · · · ks; this number is clearly the greatest
number of hyperedges containing a common vertex, i.e. the maximum degree in
H. This corollary can be expressed in terms of integer sequences (e.g. [4], [5], [7],
[8], [12], [14]) and in other formulations as well (e.g. [2], [11], [15]) and is a special
case of Theorem 1.3.

1.3. Talbot’s analogue of the EKR theorem

Very recently, in 2003, Talbot [15], investigating a problem of Holroyd [10], pro-
duced a further analogue of the EKR theorem. Considering the numbers 1, 2, . . . , n
in cyclic fashion, so that i and i + 1 are adjacent (1 ≤ i ≤ n − 1) and n and 1
are adjacent, Talbot treated r-subsets of {1, 2, . . . , n} which are separated, that is
no adjacent pair is in any separated r-subset. Talbot showed that if A is an inter-
secting family of seperated r-subsets of {1, 2, . . . , n} then |A| ≤ (

n−r−1
r−1

)
. He also

characterized the families A for which there is equality here. Talbot’s achievement
in finding a proof of this was quite notable, as there seems to be no easy way of
tackling this problem on the lines of the original proof [6], Katona’s proof [13] or
Daykin’s proof [3], the three main proofs of the EKR theorem; Talbot’s proof is
more similar to the original proof than to the other two.

1.4. A unified viewpoint: r-EKR graphs

The EKR theorem, the corollary to Berge’s theorem and Talbot’s theorem can all
be expressed in a very similar way in terms of graph theory. Let G be a given
graph with n vertices and consider the independent (or stable) r-subsets of the
vertex set V (G) of G, that is, the r-subsets with no edge of G joining any pair
of vertices. We look for an intersecting family of independent r-subsets. For the
original EKR-theorem, we can take G to be the graph with n ≥ 2r vertices and no
edges. For the corollary to Berge’s theorem, we can take G to be the graph with r
components, each a complete graph, the ith having order ki. For Talbot’s theorem
we can take G to be an n-cycle.

We call a family A of independent r-subsets of V (G), all containing the
same vertex, say w, an r-star ; the vertex w is called the star centre. We call a
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graph G r-EKR if some largest intersecting family of independent r-subsets of
V (G) is an r-star. We call G strictly r-EKR if every largest intersecting family
of independent r-sets is an r-star. The EKR theorem, the corollary to Berge’s
theorem, and Talbot’s theorem may all be expressed by saying that the relevant
graph is r-EKR.

We mention that Talbot actually proved more, namely that the k-th power
of an n-cycle is r-EKR if k ≥ 1, r ≥ 1 and n ≥ r(k + 1). He also showed exactly
when Ck

n is strictly r-EKR.
Not all graphs need be r-EKR. For a much fuller discussion of this, see

Holroyd and Talbot [12]. A simple example of a graph which is not r-EKR is
provided, paradoxically, by the graph with n vertices and no edges when n < 2r.
Then every r-set intersects every other r-set. Another simple example is provided
by the graph G in Figure 1. This graph is not 3-EKR. A largest 3-star that can
be obtained is clearly {acd, ace, acf, adf}, which has four members. Yet a largest
intersecting family of independent 3-sets is {acd, ace, acf, adf, cdf}, which has five
members.

We draw attention to the following interesting conjecture of Holroyd and
Talbot. Let,

µ(G) = min{|I| : I is a maximal independent subset of V (G)}.
Conjecture 1.1. If 1 ≤ r ≤ µ/2, then G is r-EKR.

1.5. Further extensions of Berge’s analogue

Our main result, Theorem 1.3, generalizes Berge’s theorem as well as a number
of generalizations of Berge’s theorem due to Gronau [8], Meyer [14], Deza and
Frankl [4], Bollobás and Leader [2], culminating in the following theorem of Hol-
royd, Spencer and Talbot [11].

Theorem 1.2. Let t ≥ r ≥ 1 and let G be a graph with t components, each being a
complete graph of order at least two (the complete graphs not necessarily being of
the same order). Then G is r-EKR, and a largest star may be found by taking the
star centre to be a vertex in a complete graph of smallest order.

The requirement in Theorem 1.2 that the components have order at least two
is essential (apart from the fact (not observed by Holroyd, Spencer and Talbot) that
we can permit one complete graph to be an isolated vertex.) In the extreme case,
when all the components are isolated vertices, we are in the situation described in
the EKR-theorem, where we needed the extra requirement that r ≤ t/2 for G to
be r-EKR.
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1.6. Our further extension of Berge’s Theorem

We let ω(G) be the clique number of a graph G, that is the largest order of a
complete subgraph of G. Note that the formulae for the clique numbers of P k

n and
Ck

n, where Pn and Cn are the path and cycle respectively with n vertices, are

ω(P k
n ) =

{
k + 1 if n ≥ k + 1,
n if n ≤ k,

and

ω(Ck
n) =

{
k + 1 if n ≥ 2k + 2,
n if n ≤ 2k + 1.

Our main result concerns a graph G consisting of cycles 1C, 2C, . . . , sC, raised
to the powers k1, k2, . . . , ks respectively and a path P raised to the power k0. We
let ci = |V (iC)| and p = |V (P )| and we let

κi =
{ bci/(ki + 1)c if ci ≥ ki + 1,

1 if 2 ≤ ci ≤ ki + 1.

We shall denote this graph G by G(ck1
1 , ck2

2 , . . . , cks
s , pk0). Our main result is:

Theorem 1.3. Let s ≥ 0, p ≥ 1 and ci ≥ 2 (1 ≤ i ≤ s). Let

min
(
ω(1Ck1), ω(2Ck2), . . . , ω(sC

ks)
) ≥ max(ω(P k0), 2), (1)

and let

1 ≤ r ≤
(

s∑

i=1

κi

)
+

⌈
p

k0 + 1

⌉
.

Then G(ck1
1 , ck2

2 , . . . , cks
s , pk0) is r-EKR. An r-star of maximum size may be ob-

tained by taking all independent r-subsets of V (G) containing one of the end ver-
tices of the path P .

It is not hard to verify that Condition (1) is equivalent to the following
Condition (2).

min
(

min
1≤i≤s

(ki + 1, ci)
)
≥ max (min (k0 + 1, p) , 2) . (2)

Thus we have:

Lemma 1.4. Conditions (1) and (2) are equivalent.

In Theorem 1.3, we include K2’s as cycles (degenerate cycles!), so that the
equation ω(iC

ki) = 2 is permitted for any value of i, 1 ≤ i ≤ s. The theorem
remains true in this case, and the proof is considerably simplified. The theorem
becomes untrue if we go further and include K1’s as (degenerate) cycles as well.

Graphs G consisting of powers of one path and several cycles may well be
r-EKR even if ω(P k0) > min1≤i≤s ω(iC

ki), but it is not clear to the authors where
the star centre of a largest star might be.
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The curious term max(ω(P k0), 2) in Theorem 1.3 is there simply to take
account of the fact that the cycles iC (1 ≤ i ≤ s) all have to have length at least
two, whereas the path can just have length 1.

Our proof of Theorem 1.3 is inspired by Talbot’s clever proof. It takes The-
orem 1.2 as its starting point.

1.7. Notation

Given the path P and the cycles 1C, 2C, . . . , sC, we let p = |V (P )|, ci = |V (iC)|,
π = c1 + c2 + · · ·+ cs and n = p+ c1 + c2 + · · ·+ cs(= p+π). We shall suppose that
the vertices of iC are c1+c2+ · · ·+ci−1+1, . . . , c1+c2+ · · · ci and that the vertices
c1 + c2 + · · ·+ ci−1 + j − 1 and c1 + c2 + · · ·+ ci−1 + j are adjacent in iC (1 ≤ i ≤
s, 2 ≤ j ≤ ci) and that c1 + c2 + · · ·+ ci−1 +1 and c1 + c2 + · · ·+ ci are adjacent in
iC. We shall suppose that the vertices of P are π + 1, π + 2, . . . , π + p(= n). The
graph G described in Theorem 1.3 has cycles 1C, 2C, . . . sC raised to the powers
k1, k2, . . . , ks respectively, and a path P raised to the power k0; we shall suppose
that G has vertex set {1, 2, . . . , n}, and shall denote G by G(ck1

1 , ck2
2 , . . . , cks

s , pk0).
We let I(r) or I(r)(G) denote the set of all independent r-sets of G, and let

I(r)
a or I(r)

a (G) denote the set of all independent r-sets of G containing some vertex
a ∈ V (G).

We shall use the letter a for an end vertex of the path P .

2. Proof of Theorem 1.3

The proof proceeds through a number of lemmas and sublemmas. Throughout A
will be an intersecting family of independent r-subsets of

V (G(ck1
1 , ck2

2 , . . . , cks
s , pk0)).

Lemma 2.1. Theorem 1.3 is true for any graph which is the union of the k0th power
of a path and s cycles, where the ith cycle is raised to the power ki, if

1. the length of the path is at least 2 and at most k0 + 1,
2. for 1 ≤ i ≤ s, the length of the ith cycle is at least 2 and at most 2ki +1, and
3. the clique number of the power of the path is not more than the smallest clique

number of the powers of the cycles.

Proof. In this case, the power of the path and the various powers of the cycles are
cliques, and then Theorem 1.3 reduces to Theorem 1.2. ¤

Lemma 2.2. Theorem 1.3 is true if p = k0 + 1, r =
∑r

i=1 κi + dp/(k0 + 1)e, and
condition (1) is satisfied.
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Before proving Lemma 2.2, let us introduce another piece of terminology.
Consider a bijection µ : {1, 2, . . . , n} → {1, 2, . . . , n} given by:

µ(c1 + c2 + · · ·+ ci−1 + j) = c1 + c2 + · · ·+ ci−1 + j + 1 (1 ≤ j < ci,
1 ≤ i ≤ s),

µ(c1 + c2 + · · ·+ ci) = c1 + c2 + · · ·+ ci−1 + 1 (1 ≤ i ≤ s),
µ(π + j) = π + j + 1 (1 ≤ j < p),

µ(n) = π + 1.

We call µ a clockwise rotation.

Proof of Lemma 2.2 Since p = k0 +1, dp/(k0 + 1)e = 1. Let r =
∑s

i=1 κi +1. Then
r is the largest possible cardinality that an independent set can have; moreover
any independent r-set must contain exactly one vertex of P .

By condition (2), ci ≥ p = k0 +1 (1 ≤ i ≤ s), so for any independent r-set A,
the intersecting family A will contain at most one of A,µ(A), µ2(A), . . . , µk0(A).
Therefore |A| ≤ |I(r)|/(k0+1). But since I(r) = I(r)

π+1∪· · ·∪I(r)
π+p and I(r)

k ∩I(r)
l = ∅

(π + 1 ≤ k < l ≤ π + p), it follows that |I(r)| = p|I(r)
π+1| = (k0 + 1)|I(r)

π+1|, so that
|A| ≤ |I(r)

π+1|, which proves Lemma 2.2. ¤

Lemma 2.3. Theorem 1.3 is true if |V (P )| = k0 + 1, 1 ≤ r ≤ ∑s
i=1 κi + 1, and

condition (1) is satisfied.

Proof. In view of Lemma 2.1, we may assume that iC
ki is not a complete graph

for at least one i, 1 ≤ i ≤ s. Without loss of generality, assume that c1 >
max(3, ω(P k0)) = max(3, k0 + 1). In particular, this implies that c1 ≥ 4 if k1 = 1
and c1 ≥ 2k1 + 2 if k1 ≥ 2 (since 1C

k1 is a complete graph if c1 ≤ 2k1 + 1). It
also implies that Ck1

c1
contains a Kp. Notice that Ck1

c1−1 and Ck1
c1−k1−1 also contain

a Kp; this is obvious if neither of these is a complete graph, but if, for example,
c1 = 2k1 + 2, then Kk1

c1−k1−1 is a Kk1+1 ⊃ Kk0+1 = Kp.
We use induction on c1 and, in particular, we shall assume that Lemma 2.3

is true for c1 − 1 and c1 − 2. Lemma 2.1 provides the base step for our induction
hypothesis. In view of Lemma 2.2, we may assume that r <

∑s
i=1 κi + 1.

Define the function f : {1, 2, . . . , n} → {1, 2, . . . , n− 1} by

f(j) =
{

1 if j = 1,
j − 1 if 2 ≤ j ≤ n.

We shall need the following very easy sublemmas:

Sublemma 2.3.1. If G is an intersecting family, then so is f(G).

Sublemma 2.3.2. If A and B are independent r-subsets of G(ck1
1 , ck2

2 , . . . , cks
s , pk0)

and A 6= B, then, for 1 ≤ j ≤ ks, f j(A) = f j(B) ⇒ A ∆ B = {c, d} for some c, d
with 1 ≤ c < d ≤ j + 1.
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Consider the following partition of our intersecting family A of independent
r-subsets of G:

A = B ∪ C ∪
(

k1⋃

i=0

Di

)
,

where

B =
{

A ∈ A : 1 /∈ A and f(A) ∈ I(r)
(
G

(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))}
,

C =
{

A ∈ A : 1 ∈ A and f(A) ∈ I(r)
(
G

(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))}
,

D0 = {A ∈ A : 1, k1 + 2 ∈ A}
Di = {A ∈ A : c1 + 1− i, k1 + 2− i ∈ B} (1 ≤ i ≤ k1).

Since f(B)∪f(C) = f(B∪C), and since, by Sublemma 2.3.1, f(B∪C) is an in-
tersecting family of independent r-subsets of I(r)

(
G

(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
,

it follows by induction that

|f(B) ∪ f(C)| ≤
∣∣∣I(r)

a

(
G

(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ . (3)

It follows from Sublemma 2.3.2 with j = 1 that |f(B)| = |B| (as no set in B contains
1) and |f(C)| = |C| (as no set in C contains 2). Therefore |B|+ |C| = |f(B)|+ |f(C)|.
Consequently

|B|+ |C| = |f(B) ∪ f(C)|+ |f(B) ∩ f(C)|.
Let

E = f(B) ∩ f(C).
Then, by (3),

|B|+ |C| ≤ |E|+
∣∣∣I(r)

a

(
G

(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ . (4)

For any family G of sets, let G − {1} = {G\{1} : G ∈ G}. Define,

F =
(
fk1−1(E − {1})) ∪

(
k1⋃

i=0

(
fk1(Di)− {1}

)
)

.

Note that if E ∈ E then E = f(C) for some C ∈ C, so 1 ∈ E. Also note that
if D ∈ Di for some i, 0 ≤ i ≤ k1, then 1 ∈ fk1(D). Therefore F is a family of
(r − 1)-subsets. The family F has many further properties given in the following
sublemmas.

Sublemma 2.3.3.

1. F is a family of independent (r − 1)-subsets of

V
(
G

(
(c1 − k1)k1 , ck2

2 , ck3
3 , . . . , cks

s , pk0

))
.

2. fk1 (D0 − {1}) , fk1 (D1 − {1}) , . . . , fk1 (Dk − {1}) and fk1−1(E − {1}) are
pairwise disjoint families of sets.

3. F is intersecting.
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4. f(F) is a family of independent (r − 1)-subsets of

V
(
G

(
(c1 − k1 − 1)k1 , ck2

2 , ck3
3 , . . . , cks

s , pk0

))
.

Sublemma 2.3.4. With p = k0 + 1,
∣∣∣I(r)

a

(
G(ck1

1 , ck2
2 , . . . , cks

s , pk0)
)∣∣∣ =

∣∣∣I(r)
a

(
G

(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣

+
∣∣∣I(r−1)

a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣

By Sublemma 2.3.2, fk1 acts as an injective mapping on Di (0 ≤ i ≤ k1), so

|Di| = |fk1(Di)| (0 ≤ i ≤ k1). (5)

By Sublemma 2.3.2 again, fk1 also acts as an injective mapping on C, so fk1−1

acts injectively on E , and so

|E| = |fk1−1(E)|. (6)

By Sublemma 2.3.3(2) it follows that |F| = |fk1−1(E)|+∑k1
i=0 |fk1(Di)|. Therefore,

by (5) and (6),

|F| = |E|+
k1∑

i=0

|Di|. (7)

As no set in F contains the vertex 1, the map f : F → f(F) is bijective, so

|F| = |f(F)|. (8)

By Sublemma 2.3.3(3) F is intersecting, so by Sublemma 2.3.2, f(F) is also
intersecting. By Sublemma 2.3.3(4), f(F) is a family of independent (r−1)-subsets
of V

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
. Therefore, by induction,

|f(F)| ≤
∣∣∣I(r−1)

a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ . (9)

Therefore, using (3), (7), (8) and (9),

|A| = |B|+ |C|+
k1∑

i=0

|Di|

= |f(B) ∪ f(C)|+ |E|+
k1∑

i=0

|Di|

= |f(B) ∪ f(C)|+ |F|
= |f(B) ∪ f(C)|+ |f(F)|
≤

∣∣∣I(r)
a

(
G

(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣

+
∣∣∣I(r−1)

a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ .
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Therefore, by Sublemma 2.3.4,

|A| ≤
∣∣∣I(r)

a

(
G

(
(c1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ .

Lemma 2.3 now follows by induction on c1. ¤

Lemma 2.4. Theorem 1.3 is true if 1 ≤ |V (P )| ≤ k0 + 1, 1 ≤ r ≤ ∑s
i=1 κi +

dp/(k0 + 1)e, and Condition 1 is satisfied.

Proof. From Lemma 2.3 we know that G(ck1
1 , ck2

2 , . . . , cks
s , pk0) is r-EKR if |V (P )| =

k0 + 1, 1 ≤ r ≤ (
∑s

i=1 κi) + 1 and Condition (1) is satisfied, and that an r-star of
maximum size can be found by taking all independent r-sets containing an end-
point a of P (in fact, since P k0 is a complete graph, any vertex of P could be the
centre of a suitable r-star).

If several vertices of P k0 are removed leaving at least one vertex, say w,
the number of independent r-sets centred on w remains unaltered. Lemma 2.4
follows. ¤

The rest of the proof of Theorem 1.3 bears a close resemblance to the proof of
Lemma 2.3, and is similarly modelled on Talbot’s proof of his separated sets result
in [15]. We still need to show that, with the cycle powers fixed, we can “grow” the
length of the path, P , to the required value p.

We argue by induction on p. The basis for the induction is provided by
Lemma 2.4 which established Theorem 1.3 whenever 1 ≤ r ≤ (

∑s
i=1 κi) + 1,

Condition (1) is satisfied, and 1 ≤ |V (P )| ≤ k0 + 1. Recall that the vertices of P
are labelled π + 1, π + 2, . . . , π + p.

Consider the following partition of our intersecting family of A independent
r-sets:

A = Q∪R ∪ S0,

where

Q =
{

A ∈ A : π + 1 /∈ A and g(A) ∈ I(r)
a

(
G(ck1

1 , ck2
2 , . . . , cks

s , (p− 1)k0)
)}

,

R =
{

A ∈ A : π + 1 ∈ A and g(A) ∈ I(r)
a

(
G(ck1

1 , ck2
2 , . . . , cks

s , (p− 1)k0)
)}

,

S0 = {A ∈ A : π + 1, π + k0 + 2 ∈ A}.
Define the function g : {1, 2, . . . , n} → {1, 2, . . . , n− 1} by

g(j) =
{

j if 1 ≤ j ≤ π + 1,
j − 1 if π + 2 ≤ j ≤ π + p.

The analogues of Sublemmas 2.3.1 and 2.3.2 are:

Sublemma 2.4.1. If G is an intersecting family, then so is g(G).
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Sublemma 2.4.2. If A and B are independent r-subsets of G
(
ck1
1 , ck2

2 , . . . , cks
s , pk0

)

and A 6= B, then, for 1 ≤ j ≤ k0,

gj(A) = gj(B) ⇒ A ∆ B = {c, d}
for some c, d with π + 1 ≤ c < d ≤ π + 1 + j.

Since g(Q)∪g(R) = g(Q∪R) and since, by Sublemma 2.4.1, g(Q∪R) is an in-
tersecting family of independent r-subsets of I(r)

a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))
,

it follows by induction that

|g(Q) ∪ g(R)| ≤
∣∣∣I(r)

a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))∣∣∣ . (10)

It follows by Sublemma 2.4.2 with j = 1 that |g(Q)| = |Q| (as no set in Q
contains π + 1) and that |g(R)| = |R| (as no set in R contains π + 2). Therefore
|Q|+ |R| = |g(Q)|+ |g(R)|. Consequently

|Q|+ |R| = |g(Q) ∪ g(R)|+ |g(Q) ∩ g(R)|.
Let T = g(Q) ∩ g(R). Then, by (10),

|Q|+ |R| ≤ |T |+
∣∣∣I(r)

a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))∣∣∣ . (11)

Define,

U =
(
gk0−1 (T − {π + 1})) ∪ (

gk0 (S0)− {π + 1}) .

Note that if T ∈ T then T = g(R) for some R ∈ R, so π +1 ∈ T . Also note that if
S ∈ S0 then π + 1 ∈ gk0(S). Therefore U is a family of (r− 1)-subsets. The family
U has the following further properties:

Sublemma 2.4.3.

1. U is a family of independent (r − 1)-subsets of

V
(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))
,

2. gk0 (S0 − {π + 1}) and gk0−1 (T − {π + 1}) are disjoint families of sets,
3. U is intersecting,
4. g(U) is a family of intersecting (r − 1)-subsets of

V
(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− k0 − 1)k0

))
.

By Sublemma 2.4.2, gk0 acts injectively on S0, so

|S0| = |gk0 (S0) |. (12)

Again, by Sublemma 2.4.2, gk0 acts injectively on R, and so gk0−1 acts injectively
on T , and so

|T | =
∣∣gk0−1 (T )

∣∣ (13)
By Sublemma 2.4.3(2) it follows that

|U| = ∣∣gk0−1 (T )
∣∣ +

∣∣gk0(S0)
∣∣ .
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Therefore, by (12) and (13),

|U| = |T |+ |S0| . (14)

As no set in U contains 1, the map g : U → g(U) is injective, so

|U| = |g(U)|. (15)

By Sublemma 2.4.3(3), U is intersecting, so by Sublemma 2.4.1, g(U) is also inter-
secting. By Sublemma 2.4.3(4), g(U) is a family of independent (r − 1)-subsets of
V

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− k0 − 1)k0

))
. Therefore, by induction,

|g(U)| ≤
∣∣∣I(r−1)

a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− k0 − 1)k0

))∣∣∣ . (16)

Therefore, using (10),(14),(15) and (16),

|A| = |Q|+ |R|+ |S0|
= |g(Q) ∪ g(R)|+ |T |+ |S0|
= |g(Q) ∪ g(R)|+ |U|
= |g(Q) ∪ g(R)|+ |g(U)|
≤

∣∣∣I(r)
a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))∣∣∣

+
∣∣∣I(r−1)

a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− k0 − 1)k0

))∣∣∣ .

We now need the following sublemma.

Sublemma 2.4.4. If p ≥ k0 + 2 then∣∣∣I(r)
a

(
G(ck1

1 , ck2
2 , . . . , cks

s , pk0)
)∣∣∣ =

∣∣∣I(r)
a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))∣∣∣

+
∣∣∣I(r−1)

a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , (p− k0 − 1)k0

))∣∣∣ .

Using this, it now follows that

|A| ≤
∣∣∣I(r)

a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ .

Thus G is r-EKR. Theorem 1.3 now follows by induction on p.

3. Proofs of the lemmas

In this section we prove those lemmas used in the proof of Theorem 1.3 which
still await a proof. We only give a proof of Sublemmas 2.3.1, 2.3.2, 2.3.3 and 2.3.4
because, for 1 ≤ x ≤ 4, the proof of Sublemma 2.4.x is either virtually the same,
or is a considerable simplification of the proof of Sublemma 2.3.x.

Proof of Sublemma 2.3.1 If G is intersecting family and A,B ∈ f(G), then there
exist C, D ∈ G such that A = f(C) and B = f(D). Then ∅ 6= f(C ∩ D) ⊆
f(C) ∩ f(D) = A ∩B. Thus f(G) is intersecting. ¤
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Proof of Sublemma 2.3.2 Let A, B ∈ I(r)
a

(
G(ck1

1 , ck2
2 , . . . , cks

s , pk0)
)

with A 6= B

but f j(A) = f j(B) for some j, 1 ≤ j ≤ k1. If 2 ≤ a ≤ c1 − j then a ∈ f j(A) ⇔
a + j ∈ A. Hence

A ∩ {j + 2, j + 3, . . . , c1} = B ∩ {j + 2, j + 3, . . . , c1}.
So as f j(A) = f j(B) but A 6= B, there exist c, d ∈ {1, 2, . . . , j +1} such that c ∈ A
and d ∈ B, say. But since j ≤ k1 we have that A ∩ {1, 2, . . . , j + 1} = {c} and
B ∩ {1, 2, . . . , j + 1} = {d}. Thus A ∆ B = {c, d}. ¤

Proof of Sublemma 2.3.3(1) We have already that

F =
(
fk1−1 (E − {1})) ∪

(
k1⋃

i=0

(
fki (Di)− {1}

)
)

is a family of (r − 1)-sets. We have to show that the sets are independent. There
are three cases.

First consider the sets in fk1−1 (E − {1}). Let H ∈ fk1−1(E). Then there
exists E ∈ E such that fk1−1(E) = H, and, as E = f(B) ∩ f(C), there also exists
B ∈ B and C ∈ C such that f(B) = f(C) = E. By Sublemma 2.3.2 with j = 1, we
know that one of the sets B, C contains 1 and the other 2, and, by the definition of B
and C, we have that 1 ∈ C, so 1 ∈ H and 2 ∈ B. Moreover, C∩{c1−k1+1, . . . , c1} =
∅ so E ∩ {c1 − k1, . . . , c1} = ∅. Therefore H ∩ {c1 − 2k1 + 1, . . . , c1} = ∅. Since
2 ∈ B it follows that E ∩ {2, . . . , k1 + 1} = ∅. It now follows that

H ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {1, 2}) = {1}, (17)

and thence that H − {1} ∈ fk1−1(E − {1}) is an independent (r − 1)-subset of

V
(
H

(
(c1 − kk1

1 ), ck2
2 , . . . , cks

s , pk0

))
.

Next suppose that H ∈ fk1(D0). Then there exists D ∈ D0 such that H =
fk1(D), and, as D ∈ D0, 1, k1 + 2 ∈ D. Thus 1 ∈ H and

H ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {1, . . . , k1 + 2}) = {1, 2} (18)

and so H − {1} is an independent (r − 1)-subset of

V
(
H

(
(c1 − k1)k1 , ck2

2 , . . . , cks
s , pk0

))
.

Finally let H ∈ fk1(Di) for some i, 1 ≤ i ≤ k1. Then there exists a D ∈ Di

with H = fk1(D), and, as D ∈ Di, c1 + 1 − i, k1 + 2 − i ∈ D. Since k1 ≥ i ≥ 1,
fk1(k1 + 2− i) = 1, so 1 ∈ H. Therefore

H ∩ ({c1− i−2k1 +1, . . . , c1−k1}∪{1, . . . , k1 +2− i}) = {c1− i−k1 +1, 1}. (19)

Hence H − {1} is an independent (r − 1)-subset of

V
(
H

(
(c1 − k1)k1 , ck2

2 , . . . , cks
s , pk0

))
.

Sublemma 2.3.3 now follows from (17), (18) and (19). ¤
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Proof of Sublemma 2.3.3(2) To show that these families are pairwise disjoint, we
consider how the members of each family intersect the set {c1 − 2k1 + 1, . . . c −
k1} ∪ {2}. Let H ∈ fk1−1(E)− {1}. From (17) we have that

H ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {2}) = ∅.
Next let H ∈ fk1(D0). From (18) it follows that

H ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {2}) = {2}.
Finally let H ∈ fk1(Di)− {1} for some i, 1 ≤ i ≤ k1. From (19) we have

H ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {2}) = {c1 − i− k1 + 1}.
Hence the families are pairwise disjoint. ¤

Proof of Sublemma 2.3.3(3) Let A,B ∈ F . First suppose that A,B ∈ fk1(Di)−{1}
for some i, 0 ≤ i ≤ k1. Then there exist D′, D′′ ∈ Di with A = fk1(D′)− {1} and
B = fk1(D′′)−{1}. If i = 0 then k +2 ∈ D′ ∩D′′ and so 2 = fk1(k1 +2) ∈ A∩B.
If 1 ≤ i ≤ k1 then c1 + 1− i ∈ D′ ∩D′′, so c1 + 1− i− k1 ∈ A ∩B.

Now suppose that A,B ∈ fk1(E) − {1}. Then there exist E′, E′′ ∈ E with
A = fk1−1(E′)− {1} and B = fk1−1(E′′)− {1}. As E′, E′′ ∈ E = f(B) ∩ f(C), it
follows that there are B1 ∈ B and C1 ∈ C such that f(B1) = E′ and f(C1) = E′′.
As B1, C1 ∈ A, we have that B1 ∩ C1 6= ∅. By the definitions of B and C, and by
Sublemma 2.3.2 with j = 1, we have that 1 ∈ C1 and 2 ∈ B1. It follows that, for
some j ≥ k1 + 3, j ∈ B1 ∩ C1. Therefore 3 ≤ fk1(j) ∈ A ∩B.

Next suppose that 0 ≤ i < j ≤ k1 and A ∈ fk1(Di)−{1} and B ∈ fk1(Dj)−
{1}. In this case there exist D′ ∈ Di and D′′ ∈ Dj with A = fk1(D′) − {1} and
B = fk1(D′′) − {1}. This implies that D′ ∩ {1, 2, . . . , k1 + 2} = {k1 + 2 − j} and
D′′ ∩ {1, 2, . . . , k1 + 2} = {k1 + 2 − i}, where 2 ≤ k1 + 2 − j < k1 + 2 − i. But
D′, D′′ ∈ A which is intersecting, so D′∩D′′ 6= ∅. Therefore there is some l ≥ k1+3
with l ∈ D′ ∩D′′. Then 3 ≤ fk1(l) ∈ A ∩B.

Finally suppose that A ∈ fk1−1 − {1} and B ∈ fk1(Di) − {1}. In this case
there exist D ∈ Di and E ∈ E with B = fk1(D) − {1} and A = fk1−1(E) − {1},
and, since E = f(B)∩f(C), there exist B1 ∈ B and C1 ∈ C such that E = f(B1) =
f(C1). From Sublemma 2.3.2 with j = 1 it follows that 1 ∈ C1 and 2 ∈ B1, so
B1 ∩ {1, 2, . . . , k1 + 2} = {2} and C1 ∩ {1, 2, . . . , k1 + 1} = {1}. Also, from the
definition of Di we have that

D ∩ {1, 2, . . . , k1 + 2} =
{ {1, k1 + 2} if i = 0,
{k1 + 2− i} if 1 ≤ i ≤ k1.

As B1, C1, D are all elements of A, we know that B1∩D and C1∩D are both non-
empty. If i = 0 then there exists some j ≥ 2k1 +3 such that j ∈ B1∩D. Otherwise
we have that 1 ≤ i ≤ k1, and in this case there exists some j1 ≥ 2k1 + 2− i + 1 ≥
k1 + 3 with j ∈ C1 ∩D. Hence 3 ≤ fk1(j) ∈ A ∩B. ¤

Proof of Sublemma 2.3.3(4) From Sublemma 2.3.3(1) we know that F is a family
of independent (r− 1)-subsets of V

(
G

(
(c1 − k1)k1 , ck2

2 , . . . , cks
s , pk0

))
. Let F ∈ F
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and consider f(F). Clearly f(F ) is an (r − 1)-subset of

V
(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
.

We just need to check that f(F) is an independent set. Since F was an independent
(r − 1)-subset of V

(
G

(
(c1 − k1)k1 , ck2

2 , . . . , cks
s , pk0

))
, the only way that f(F)

could fail to be an independent (r − 1)-subset of

V
(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))

is if F contains one of the following pairs of elements:

(c1 − 2k1 + 1, 2), (c1 − 2k1 + 2, 3), . . . , (c1 − k1, k1 + 1), (1, k1 + 2).

The vertex 1 has been removed from every set in F so the last pair (1, k1 + 2)
cannot be contained in F . If F ∈ fk1−1(E)− {1} then by (17) (as the H there is
in fk−1(E)) it follows that

F ∩ {c1 − 2k1 + 1, . . . , c1 − k1} = ∅.
This also follows from (18) if F ∈ fk1(D0)− {1} (as the H in (19) is in fk1(D0)).
It remains to check what happens if F ∈ fk1(Di) − 1 for some i, 1 ≤ i ≤ k1. In
this case it follows from (18) that

F ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {1, . . . , k1 + 2− i}) = {c1 − i− k1 + 1} (20)

(as the G in (18) is in fk1(Di)). Note that all pairs of vertices in the list other
than the excluded pair (1, k1 + 2) are of the form (c1 − 2k1 + j, j + 1). Since we
have c1 − k1 − i + 1 = c1 − 2k1 + (k1 − i + 1) ∈ F it follows from (20) that
(k1− i+1)+1 = k1− i+2 /∈ F . Thus F cannot contain any of the pairs of vertices
in the list. ¤

Proof of Sublemma 2.3.4 To prove this we let

A = I(r)
a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , pk0

))

and follow the line of reasoning in the induction step in the proof of Lemma 2.3.
We may suppose here that the end-vertex a of the path is the vertex n.

From the definitions of B and C it follows that

f(B) ∪ f(C) = I(r)
a

(
G

(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
,

so that (3) holds with equality. We therefore have that

|B|+ |C| =
∣∣∣I(r)

a

(
G

(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ + |E|

so that (4) holds with equality.
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Since A is partitioned into B, C,D0, . . . ,Dk, it follows that
∣∣∣I(r)

a

(
G

(
ck1
1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣
−

∣∣∣I(r)
a

(
G

(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ = |E|+ ∑k1
i=0 |Di|

= |F|, by (7),
= |f(F)|, by (8).

(21)

From Sublemma 2.3.3(4) we know that f(F) is a family of independent (r − 1)-
subsets of V

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
. Since f(F) is a subfamily of

fk1+1(A), it follows that every independent (r − 1)-set in f(F) contains the end-
vertex of P k0 , and thus in I(r−1)

a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
it follows

that
|f(F)| ≤ I(r−1)

a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
. (22)

For a family G of subsets of {1, 2, . . . , n}, let G+{i} denote the family {G∪{i} :
G ∈ G}.

Now consider the “reverse” map f−(k1+1) : {1, 2, . . . , n − k1 − 1} → {k1 +
2, . . . , n} given by f−(k1+1)(j) = k1+1+j. Under this map the independent (r−1)-
sets in I(r−1)

a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
are taken to E ′ ∪ ∑k1

i=0D′i,
where E ′∪{2} ⊆ B, E ′∪{1} ⊆ C (and f(E ′) ⊆ E −{1}) and D′i +{k1 +2− i} ⊆ Di

(1 ≤ i ≤ k1) and D′0 + {1} ⊆ D0. Let us describe this in more detail. Consider an
independent (r − 1)-set S in I(r−1)

a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
.

(a) If S contains the vertex 1 (so does not contain any vertex in {c1 − 2k1, c1 −
2k1 + 1, . . . , c1 − k1 − 1}), then f−(k1+1)(S) contains the vertex k1 + 2 and
does not contain any of the vertices in {c1− k1 + 1, . . . , c1} ∪ {1, . . . , k1 + 1}.
We let

D′0 =
{

f−(k1+1)(S) : 1 ∈ S and

S ∈ I(r−1)
a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))}
;

then D′0 ∪ {1} ⊆ D0.
(b) If S contains a vertex c1−k1−i for some i, 1 ≤ i ≤ k1 (and so does not contain

any vertex in the set {c1− k1− i + 1, . . . , c1− k1− 1} ∪ {1, 2, . . . , k1 + 1− i},
then f−(k1+1)(S) contains the vertex c1 − i + 1 and does not contain any of
the vertices in {c1− i + 2, . . . , c1}∪ {1, 2, . . . , 2k1 + 2− i}. For 1 ≤ i ≤ k1, we
let

D′i =
{

f−(k1+1)(S) : c1 − k1 − i ∈ S and

S ∈ I(r−1)
a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))}
;

then D′i + {k1 + 2− i} ⊆ Di.
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(c) If S contains no vertex from the set {c1 − 2k1, . . . , c1 − k1 − 1} ∪ {1}, then
f−(k1+1)(S) contains no vertex from the set {c1−k1+1, . . . , c1}∪{1, 2, . . . , k1+
2}. We let

E ′ =
{

f−(k1+1)(S) : S ∩ ({c1 − 2k1, . . . , c1 − k1 − 1} ∪ {1}) = ∅ and

S ∈ I(r−1)
a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))}
.

Then E ′ ∪ {2} ⊂ B and E ′ ∪ {1} ⊆ C, so E ′ ⊆ E . It follows that
∣∣∣I(r−1)

a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ ≤ |E ′|+
k1∑

i=0

|D′i|. (23)

The family E ′ ∪∑k1
i=0D′i has the properties that

|E ′|+
k1∑

i=0

|D′i| ≤ |E|+
k1∑

i=0

|Di| = |F| = |f(F)|.

It therefore follows from (22) and (23) that

|f(F)| =
∣∣∣I(r−1)

a

(
G

(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ . (24)

The equality we wish for now follows from (21) and (24). ¤

4. Final remarks

There are a number of operations which can be used to obtain new r-EKR graphs
from old. The first is described by the following lemma of Holroyd, Spencer and
Talbot [11]. Let N(v) denote the neighbourhood of v, that is N(v) = {w : w ∈
V (G) and vw ∈ E(G)}.
Lemma 4.1. Let G be an r-EKR graph with a star centre v. If S ⊂ N(v) then
G− S is also r-EKR with a star centre v.

By applying this to the graph G(ck1
1 , ck2

2 , . . . , cks
s , pk0) in the case where p ≥

k0 + 2 and S = N(n) (n being the end vertex of the path P ), we obtain the
following theorem.

Theorem 4.2. Let s ≥ 0, p ≥ 1 and ci ≥ 2 (1 ≤ i ≤ s). Let G be a graph consisting
of cycles 1C, 2C, . . . , sC raised to the powers k1, k2 . . . , ks respectively, a path P
raised to the power k0, and an isolated vertex. Let c1 = |V (iC)| (1 ≤ i ≤ s) and
p = |V (P )|+ k0 + 1. Also let

1 ≤ r ≤
s∑

i=1

⌊
ci

ki + 1

⌋
+

⌈
p

k0 + 1

⌉
.

Let
min

(
ω(1Ck1), ω(2Ck2), . . . , ω(sC

ks)
) ≥ k0 + 1.

Then G is r-EKR with the isolated vertex w as star centre.
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It is worth remarking that in a similar vein Holroyd, Spencer and Talbot in
[11] showed that if G is a graph with q components being paths, cycles, complete
graphs, and at least one isolated vertex, and if q ≥ 2r, then G is r-EKR.

Finally we make two further comments.

1. If w ∈ N(v?), where v? is a star centre of an r-EKR graph G, then it is clear
that the addition of any edge wv produces a further graph that is r-EKR
with star centre v?.

2. If G is an r-EKR graph, then we can introduce a further vertex w and join
it to each vertex of G, and by this means produce a further r-EKR graph.
Conversely, if G is an r-EKR graph, and G contains a vertex w which is
joined to all other vertices, then G− w is also r-EKR.
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