
The domination number of cubic
Hamiltonian graphs

M. Cropper, D. Greenwell, A.J.W. Hilton1 and A. Kostochka2

Abstract

Let γ(G) denote the domination number of a graph, and let C be
the set of all Hamiltonian cubic graphs. Let

γ̄(n) = max {γ(G)| G ∈ C and |V (G)| = n} ,

and
γ(n) = min {γ(G)| G ∈ C and |V (G)| = n} .

Then, for n ≥ 4, n even,

γ̄(n) =
⌊

n + 1
3

⌋
and γ(n) =

⌊
n + 2

4

⌋
.

1 Introduction

The domination number γ(G) of a graph G is the least number of vertices
needed to dominate G. Thus, if N(v) denotes the closed neighbourhood of a
vertex v, then

γ(G) = min
S⊆V (G)

{
|S| : V (G) ⊆

⋃
v∈S

N(v)

}
.

Throughout let G be a Hamiltonian cubic graph, and let n = |V (G)| .
Some attention has been given to the relationship between the domination

number of a graph G and its minimum degree δ(G). Blank [1] and later,
independently, McCuaig and Shephard [4] showed that, apart from seven
exceptional graphs, if δ(G) ≥ 2 then γ(G) ≤ 2

5
|V (G)| . Then, in [5], Reed

showed that if δ(G) ≥ 3, then γ(G) ≤ 3
8
|V (G)| . Kawarabayashi, Plummer

and Saito [3] have recently shown (as a special case of a more general result)
that if G is a 2-edge-connected cubic graph of girth 3k then

γ(G) ≤
(

3k + 2

9k + 3

)
|V (G)| .

1Research of this author was partially supported by the Vernon Wilson endowment at
Eastern Kentucky University.

2Research of this author was partially supported by NSF grant DMS-0400498 and grant
03-01-00796 of the Russian Foundation for Basic Research.
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This improves upon Reed’s result when k ≥ 3.
In [5] Reed also conjectured that if G is a connected cubic graph then

γ(G) ≤ ⌈
n
3

⌉
. In the very special case when G is Hamiltonian as well as cubic,

we can select every third vertex of a Hamiltonian cycle, so Reed’s conjecture
is clearly true in this case. However, Plummer suggested to the authors
that, in this very special case, the slightly stronger inequality γ(G) ≤ ⌊

n
3

⌋
was true. There is no difference between these conjectures if n ≡ 0 (mod 3).
We show that Plummer’s conjecture is true if n ≡ 1 (mod 3), but is false if
n ≡ 2 (mod 3).

Let C be the set of all Hamiltonian cubic graphs. Let

γ̄(n) = max {γ(G)| G ∈ C and |V (G)| = n} .

The precise result we prove is:

Theorem 1. For n ≥ 4, n even, γ̄(n) =
⌊

n+1
3

⌋
.

If γ(n) = min {γ(G)| G ∈ C and |V (G)| = n} , we also prove:

Theorem 2. For n ≥ 4, n even, γ(n) =
⌊

n+2
4

⌋
.

We just noted that γ(n) ≤ ⌈
n
3

⌉
for all n ≥ 4, and in [5] Reed showed that

γ(n) = n
3

=
⌊

n+1
3

⌋
if n ≡ 0 (mod 3). Therefore Theorem 1 follows from the

following propositions.

Proposition 3. If n = 3k + 2, then γ(n) ≥ ⌊
n+1

3

⌋
= k + 1 .

Proposition 4. If n = 3k + 1, then γ(n) ≥ ⌊
n+1

3

⌋
= k .

Proposition 5. If n = 3k + 1, then γ(n) ≤ k .

2 Proof of Proposition 3

For k ≥ 1 and 1 ≤ i ≤ k, let Si be the graph depicted in Figure 1 with vertex
set {ai−1, bi, ci, ai, a′i−1, b′i, c′i, a′i} and edge set
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{ai−1 bi, bi ci, ci ai, a′i−1 b′i, b′i c
′
i, c′i a

′
i, ai−1 a′i−1, ai a

′
i, bi c

′
i, b′i ci}. Let H(6k+

2) be the graph S1∪ ...∪Sk, let H1(6k +2) be H(6k +2)∪{a0 ak, a′0 a′k} and
let H2(6k + 2) be H(6k + 2) ∪ {a0 a′k, a0 a′k}.

Clearly, H1(6k + 2) and H2(6k + 2) are cubic Hamiltonian graphs. We
shall show that γ (H1(6k + 2)) = γ (H2(6k + 2)) = 2k + 1 ≥ ⌈

6k+2
3

⌉
. Then

Proposition 3 follows.
We may easily check that γ (H1(8)) = γ (H2(8)) = 3. Suppose Propo-

sition 3 is not true. Then there is a smallest integer k such that, for some
H ∈ {H1(6k +2), H2(6k +2)}, γ(H) ≤ 2k. Since γ (H1(8)) = γ (H2(8)) > 2,
it follows that k ≥ 2.

Let D be a dominating set of cardinality 2k of H. For 0 ≤ i ≤ k, let
Ai = D ∩ {ai, a′i} and, for 1 ≤ i ≤ k, let Xi = D ∩ {bi, b′i, ci, c′i}.
Lemma 6. For 0 ≤ i ≤ k − 1, if |Ai| = 2 then |Ai+1| = 0 (i.e. Ai+1 = ∅),
and, for 1 ≤ i ≤ k, if |Ai| = 2 then |Ai−1| = 0.

Proof. Suppose |Ai| = 2 and 0 ≤ i ≤ k − 1.

Case 1. |Ai+1| = 2.
Let H̃ be obtained from H by deleting bi+1, b′i+1, ci+1, c′i+1, and identify-

ing ai with ai+1 and a′i with a′i+1. Then H̃ ∈ {H1 (6(k − 1) + 2),

H2 (6(k − 1) + 2)} and H̃ has a dominating set D̃ obtained from D by iden-
tifying ai with ai+1 and a′i with a′i+1 of cardinality at most 2(k − 1). This
contradicts the minimality of k.

Case 2. |Ai+1| = 1.
We may suppose that Ai+1 = {ai+1}. Then D must contain a vertex that

dominates c′i+1 (or possibly coincides with c′i+1) in Si+1. Therefore, if H̃ is

constructed from H as in Case 1, then γ(H̃) ≤ 2(k − 1), a contradiction.
Therefore |Ai+1| 6= 1.
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It follows that |Ai+1| = 0.
The argument showing that, if 1 ≤ i ≤ k and |Ai| = 2, then Ai−1 = ∅ is

similar.

Lemma 7. If 0 ≤ i ≤ k − 1 and |Ai| = 1 then |Ai+1| 6= 1. Equivalently, if
1 ≤ i ≤ k and |Ai| = 1 then |Ai−1| 6= 1.

Proof. For some i, 0 ≤ i ≤ k − 1, suppose that |Ai| = |Ai+1| = 1. Then
one of {bi+1, c′i+1, b′i+1, ci+1} lies in D. We construct a graph H∗ by deleting
bi+1, b′i+1, ci+1, c′i+1 and identifying the vertex of D ∩ Ai with the vertex
of D ∩ Ai+1, and the vertex of Ai\D with the vertex of Ai+1\D. Then
H∗ is isomorphic to one of H1 (6(k − 1) + 2) and H2 (6(k − 1) + 2). Since
γ(H∗) ≤ 2(k − 1), we have a contradiction. Therefore |Ai+1| 6= 1.

Lemma 8. For 1 ≤ i ≤ k, |Xi| ≤ 1.

Proof. Suppose that, for some i, |Xi| ≥ 2. Consider the graphs H̃ and H̃ ′

obtained by deleting bi, b′i, ci, c′i and identifying ai−1 with ai, and a′i−1 with

a′i, or ai−1 with a′i, and a′i−1 with ai respectively. All vertices of H̃ and H̃ ′

apart from the two new vertices are dominated by D\Xi. Hence if |Xi| ≥ 3
then (D\Xi) ∪ {ai} is a dominating set of cardinality at most 2(k − 1). If
|Xi| = 2, then at least two of ai−1, a′i−1, ai and a′i are dominated by D\Xi.

Thus in this case, the set D\Xi is dominating either in H̃ or H̃ ′, and its
cardinality is at most 2(k− 1). Since each of H̃ and H̃ ′ is isomorphic to one
of H1 (6(k − 2) + 2) and H2 (6(k − 2) + 2), we have a contradiction against
the minimality of k. Therefore |Xi| ≤ 1.

Lemma 9. For 1 ≤ i ≤ k − 1, Ai 6= ∅.
Proof. Suppose Ai = ∅ for some i, 1 ≤ i ≤ k − 1. By Lemma 8, |Xi| ≤ 1, so
bi+1 and b′i+1 must be dominated by the same vertex. This is only possible
if Xi+1 ⊆ {ci+1, c′i+1}. Therefore Xi ∩ {bi+1, b′i+1} = ∅. Therefore ai and a′i
must be dominated by ci and c′i respectively, contradicting Lemma 8.

Lemma 10. k ≤ 2.

Proof. Suppose k ≥ 3. By Lemma 9, |A1| ≥ 1 and |A2| ≥ 1.

Case 1. Suppose |A1| = 1. Then, by Lemma 6, |A2| ≤ 1, so |A2| = 1. But
this contradicts Lemma 7.

Case 2. Suppose |A1| = 2. Then, by Lemma 6, A2 = ∅, contradicting Lemma
9.

Lemma 11. k 6= 2.
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Proof. Suppose k = 2. By Lemma 9, |A1| ≥ 1.

Case 1. |A1| = 1.
By Lemma 7, |A0| 6= 1 and |A2| 6= 1. By Lemma 6, |A0| 6= 2 and

|A2| 6= 2. Therefore A0 = A2 = ∅. In order that a0, a′0, a2, a′2 be dominated,
it is necessary that b1, b′1, c2, c′2 ∈ D. But then γ(H) = 5 > 2k, contradicting
the definition of k.

Case 2. |A1| = 2.
By Lemma 6, A0 = A2 = ∅, and we get a contradiction as in Case 1.

We conclude that Proposition 3 is true.

3 Proof of Proposition 4

Since any cubic graph has even order, and since n ≡ 1 (mod 3), it follows that
n ≡ 4 (mod 6). If n = 4, then γ(K4) = 1 =

⌊
n+1

3

⌋
. Now suppose that n > 4.

Then n ≥ 10. Let n = 6k + 4, where k ≥ 1. Take the graph H1(6k + 2)
constructed in Section 2 and insert two further vertices v1 and v′1 in the
edges a0 b1 and a′0 b′1 respectively, and add an edge v1 v′1. We obtain a cubic
Hamiltonian graph G with 6k + 4 vertices. Suppose that D is a dominating
set of G. If {v1, v2} /∈ D then D dominates H1(6k + 2), so |D| ≥ 2k + 1.
Similarly if v1 ∈ D, v2 /∈ D then (D\{v1}) ∪ {a0} dominates H1(6k + 2),
and if v1, v2 ∈ D then (D\{v1, v2}) ∪ {a0, a

′
0} dominates H1(6k + 2). Thus

|D| ≥ 2k + 1.
Therefore, for all n ≥ 4, if n ≡ 1 (mod 3) then γ(n) ≥ ⌊

n+1
3

⌋
.

4 Proof of Proposition 5

We need to show that if n = 3k + 1 and G is a cubic Hamiltinian graph of
order n, then γ(G) ≤ k. Suppose to the contrary that γ(G) ≥ k + 1. Fix a
Hamiltonian cycle H of G.

An arc of H is a path P contained by H; the number of edges in the arc
P is its length; we shall denote the length by |P |. If an arc P has x edges
and x ≡ i (mod 3), where 0 ≤ i ≤ 2, then we say that P is an i-arc. An edge
of G which is not an edge of H is a chord.

If A, B, C, D are four vertices on H and AB and CD are chords and A,
C, B, D occur in that order going round H, then the chords AB and CD
are said to cross. If AC, CB, BD, DA are a-, c-, b-, d-arcs respectively, then
ACBD is an (acbd)-partition of H. Clearly, a+ b+ c+d ≡ 1 (mod 3) and an
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(acbd)-partition is also a (πa, πc, πb, πd)-partition for any cyclic permutation
π of acbd.

We first note that no chord of G separates H into two 2-arcs. For if AB
were such a chord and P were one of the 2-arcs, then P ∪ AB has 3x edges
for some integer x, and has a dominating set of x vertices including A. The
other arc is dominated by A and k−x vertices, so γ(G) = k, a contradiction.

Thus each chord separates H into a 0-arc and a 1-arc.
It follows that no two crossing chords AB and CD give an (acbd)-partition

(D\{v1, v2})∪{a0, a
′
0} with two adjacent 1’s, or an adjacent 0 and 2, counting

d as being adjacent to a. Therefore the only possible partitions are a (0001)-
partition, a (0121)-partition and a (1222)-partition.

In fact a (1222)-partition cannot occur. Before showing this, we need the
following Lemma.

Lemma 12. Given a graph G, suppose that an edge XY is subdivided by three
vertices U , V , W so that X, U , V , W , Y occur in that order, producing a
graph G∗. Then γ(G∗) ≤ γ(G) + 1.

Proof. Let D be a dominating set of cardinality γ(G) of G. If X,Y /∈ D
or {X, Y } ⊆ D, then D ∪ {V } dominates G∗. If |D ∩ {X, Y }| = 1 then
we may suppose that X ∈ D. In that case D ∪ {W} dominates G∗. Thus
γ(G∗) ≤ γ(G) + 1.

Suppose that AB and CD are crossing chords giving a (1222)-partition
with the arcs DA, AC, CB, BD being 1-, 2-, 2-, 2-arcs respectively. If these
arcs have length 1 or 2 then G has 7 vertices and is dominated by 2 vertices,
B and C. If 3k + 1 > 7 then repeated application of Lemma 12 shows that
γ(G) ≤ k, a contradiction. This establishes:

Claim 1. All partitions are (0001)-partitions or (0121)-partitions.

Claim 1 has two consequences.

Claim 2. Let AB be a chord with a 0-arc and let C be a vertex on the 0-arc
of AB such that |AC| ≡ 1 (mod 3). If the chord CD crosses AB then A is
on the 1-arc of CD.

Proof. Since |AC| ≡ 1 (mod 3) and AC ∪ CB is a 0-arc, |CB| ≡ 2 (mod 3),
so by Claim 1, |AD| ≡ 0 (mod 3).

Claim 3. Let AB be a chord with a 0-arc and let C be a vertex on the 1-arc
of AB such that |AC| ≡ 2 (mod 3). Then the chord CD does not cross AB.
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Proof. Since |AC| ≡ 2 (mod 3), |CB| ≡ 2 (mod 3) also. By Claim 1, CD does
not cross AB.

¿From Claim 1 we also deduce the following lemma.

Lemma 13. Let AB be a chord with a 0-arc and let A, A1, A2, . . . , As, B
be the vertices of its 0-arc. If the chords A1 C1 and As Cs cross AB, then
they do not cross each other.

Proof. Suppose A1 C1 and As Cs cross each other and AB. Then the vertices
A, A1, As, B, C1, Cs are on H in this order. Since |AA1| ≡ 1 (mod 3) and
|A1B| ≡ 2 (mod 3), by Claim 1 applied to AB and A1 C1, |BC1| ≡ 1 (mod 3).
Similarly |ACs| ≡ 1(mod 3). Thus A1 C1 and As Cs yield a (1222)-partition
of H, contradicting Claim 1.

Now choose a shortest 1-arc AB in H. Then |AB| ≥ 4. There are two
distinct vertices, C, D, on the arc AB such that CD is a 0-arc. To see this,
let C be a vertex on AB such that the path AC has two edges. Then by
Claim 3, the chord on C, say CD, does not cross AB. By the definition of
AB, the chord CD is a 0-arc.

Let KL be a shortest 0-arc with both vertices on the arc AB. Let the
vertices of KL be, in order, K, K1, K2, . . . , Ks, L. Let K1 D1 and Ks Ds

be the chords starting at K1 and Ks respectively. By the minimality of KL
and AB, each of K1 D1 and Ks Ds cross KL. By Claim 2, the arc of K1 D1

containing K is a 1-arc, and the arc of Ks Ds containing L is a 1-arc. By
Lemma 13, K1 D1 and Ks Ds do not cross. By the minimality of AB, each
of K1 D1 and Ks Ds crosses AB. Thus A, K, K1, Ks, L, B, Ds, D1 occur in
this order going round H. This is illustrated in Figure 2.
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Since |KL| ≡ 0 (mod 3) and |AB| ≡ 1 (mod 3), it follows that |AK| +
|BL| ≡ 1 (mod 3).

Because of the symmetry, we need only consider two cases.

Case 1 |AK| ≡ |LB| ≡ 2 (mod 3).
¿From simple arithmetic, it follows that

|K K1| ≡ |K1 Ks| ≡ |Ks L| ≡ |B Ds| ≡ |Ds D1| ≡ |D1 A| ≡ 1 (mod 3) .
In the case when all these sizes are 1 and 2, there are 10 vertices, and G is
dominated by K, B and Ds. If 3k + 1 > 10 then repeated applications of
Lemma 12 shows that G is dominated by k vertices in this case, a contradic-
tion.

Case 2. |AK| ≡ 0 (mod 3) and |LB| ≡ 1(mod 3).
By simple arithmetic we have

|K K1| ≡ |K1 Ks| ≡ |Ks L| ≡ |D1 Ds| ≡ |BL| ≡ 1 (mod 3) ,
|LK| ≡ |AD1| ≡ 0 (mod 3) and |B Ds| ≡ 2 (mod 3). But then Ds, A, Ks, B
mark a (1222)-partition, contradicting Claim 1.

In every case, our hypothesis that γ(G) ≥ k + 1 leads to a contradiction,
so γ(G) ≤ k, as asserted.

5 Proof of Theorem 2

We construct a Hamiltonian cubic graph G with γ(G) =
⌊

n+2
4

⌋
by identifying

the pendent edges of the graphs in Figure 3.

Figure 3
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If 4|n we take n
4

copies of A identifying one pendent edge of one copy with a
pendent edge of another, and the other pendent edge of the first copy with
a pendent edge of a third copy (if n ≥ 12), and so on, so as to form a cycle
of such graphs. If n ≡ 2 (mod 4) we take a copy of B and 1

4
(n − 6) copies

of A, indentifying edges and forming a cycle of graphs, similarly. We find a
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dominating set of cardinality
⌊

n+2
4

⌋
by taking one of the two central vertices

from each copy of A, and by taking V and W from B.
Clearly if G is a cubic Hamiltonian graph, for each v ∈ V (G), |N(v)| = 4,

so γ(G) ≤ ⌊
n+2

4

⌋
.

Thus γ(n) =
⌊

n+2
4

⌋
when n is even, as asserted.
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