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Abstract


In an ordinary list multicolouring of a graph, the vertices are “coloured” with subsets of pre-assigned finite sets (called “lists”) in such a way that adjacent vertices are coloured with disjoint sets.  Here we consider the analogue of such colourings in which the lists are measurable sets from an arbitrary atomless, semifinite measure space, and the colour sets are to have prescribed measures rather than prescribed cardinalities.  We adapt a proof technique of Bollobás and Varopoulos to prove an analogue of one of the major theorems about ordinary list multicolourings, a generalization and extension of Hall’s marriage theorem, due to Cropper, Gyárfás, and Lehel.

1.
Introduction:  List Multicolourings of Graphs


Throughout,  G  will be a finite, simple graph with vertex set  V.  When another graph  H  enters the discussion, its vertex set will be denoted  V(H).  For other notation usual in graph theory, see [10].


In the usual sense, list (multi) colouring problems arise in the following context.  Let  C  be an infinite set (of “colours”, or “symbols”), and let  
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  denote the collection of finite subsets of  C.  A function  
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  is called a list assignment to the vertices of  G:  there is also a function  
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,  the cardinality prescription or colour demand function.  Given these, a proper 
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)  of  G  is a function  
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It is useful to note that (iii) is equivalent to:

(iii)(
for each  
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  is an independent set of vertices of  G.  (That is, no two vertices of this set are adjacent in  G .)


For  
[image: image15.wmf]C

s

Î

  and  H  a subgraph of  G,  let  
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  denote the vertex independence number of  
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,  the subgraph of  H  induced by those vertices bearing  (  on their  L  lists.  Note that  
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  is an upper bound on the number of appearances of  (  in any proper  (L, ()-colouring of  H.  This interpretation leads easily to the conclusion that the following, Hall’s condition on 
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,  is necessary for the existence of a proper  (L, ()-colouring of  G:

For each subgraph  H  of  G,
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* (L, (, H)


It is useful to note that Hall’s condition is satisfied if  * (L, (, H)  holds for each induced subgraph  H  of  G.  The reason for the name “Hall’s condition” is that Hall’s marriage theorem [5] may be stated:  if  G  is a clique and  
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,  then Hall’s condition, a condition on  L,  is sufficient for the existence of a proper  (L, 1)-colouring of  G – which, in these circumstances, is a “system of distinct representatives” of the sets  
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A well-known strengthening of Hall’s theorem noted by many, among them Rado [9] and Halmos and Vaughan [6], may be stated:  if  G  is a clique, then Hall’s condition, now a condition on  L  and  (,  is sufficient for the existence of an  (L, ()-colouring of  G.  The problem of characterizing the graphs which have this property of cliques has recently been solved by Cropper, Gyárfás and Lehel [3].  The characterization is given in the following theorem.

Theorem CGL ([3]; also, see [2].)  The following are equivalent:

(a)
G  has the property that Hall’s condition (on  L  and  ( )  is sufficient for the existence of a proper  (L, ( )-colouring of  G ;

(b)
G  is the line graph of a forest;

(c)
every block of  G  is a clique, and every cut-vertex of  G  is in exactly two blocks;

(d)
G  has none of  
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-minus-an-edge, nor  
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  as an induced subgraph.


In the next section we generalize list multicolouring problems, and Hall’s condition, by allowing the “lists” to be measurable sets from any positive measure space, with the colour sets to be measurable subsets of the lists of prescribed measure.  In Section 3 we adapt a proof of Bollobás and Varopoulos to prove the analogue of Theorem CGL when the measure space is atomless and semifinite.

2.
List Multicolourings with Measurable Sets
Throughout,  (X, (, ()  will be a positive measure space.  In this notation,  X  is a set,  (  is a  (-algebra of “measurable” subsets of  X,  and  
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  is a positive measure.  In some places, in what follows, mention of  (  will be suppressed.  If  “
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Given a “list assignment”  
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,  a proper  (L, ()-colouring of  G  is a function  
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Again, (iii) is equivalent to:

(iii)(
for each  
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  is an independent set of vertices of  G.


Some might prefer to replace  “
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”  in (iii) by  “
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Given  
[image: image41.wmf](,,),,,

XxXL

mk

Î

p

  and a subgraph  H  of  G,  let  
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  be defined as it was in the preceding section; that is,  
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  stands for the characteristic function of  
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  is a measurable function on  X.  (Indeed,  
[image: image49.wmf](,,)

LH

a

×

  is a non-negative measurable simple function, since it can take only the values  0, 1, …, ( (H) = the vertex independence number of  H .)


We will say that  (G, L, ()  satisfies Hall’s condition if and only if, for each subgraph  H  of  G,
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Since if  
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  is a subgraph of  H  obtained by deleting edges then  
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  for all  
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  satisfies Hall’s condition if and only if  * (L, (, H, ()  holds for all induced subgraphs  H  of  G. 

Proposition 1.   Hall’s condition is necessary for the existence of a proper  (L, ()-colouring of  G.

Proof:  Suppose that  (  is a proper  (L, ()-colouring of  G.  Suppose that  H  is a subgraph of  G.  Because  (  satisfies (iii), above,  
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Following the terminology of Fremlin [4], we will say that  
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  is atomless and semifinite if and only if for each  
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All such spaces in this paper are non-trivial, meaning  
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.  It is an ancient result of Carathéodory (see [4]) that an atomless, semifinite positive measure space  
[image: image66.wmf](,,)

X

m

p

  satisfies the following apparently more stringent requirement, which we shall occasionally refer to as arbitrary divisibility:  if  
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[image: image71.wmf](

)

()()

vv

mjk

=

  to  
[image: image72.wmf](

)

()()

vv

mjk

³

.


Now we give two definitions and a result that will prove useful in stating and proving our main result, in the next section, which is an analogue of Theorem GCL for atomless, semifinite measure spaces.

Definition of  
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  denote the collection of graphs  G  such that whenever  
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  satisfy Hall’s condition, with  G,  then there is a proper  (
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)-colouring of  G.  (Note that in this definition we are not allowing  (  as a value of  (.  We leave to others, for now, the pleasure of investigating what happens if  
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Next we retrieve from [2] the definition of 
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Definition of 
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.   
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 denotes the collection of graphs  G  in which every block of  G  is a clique, and every cut vertex of  G  is in exactly two blocks.

Thus 
[image: image83.wmf]0

k

 is the collection of graphs characterized in Theorem GCL.
Proposition 2.   Suppose that  
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  is an induced subgraph of  G.  Then  
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Proof:  Suppose that  
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  has no proper  (L, ()-colouring,  G  cannot have one either.  We show that  G,  L  and  (  satisfy Hall’s condition, which will prove that  
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Suppose that  H  is an induced subgraph of  G.  Let  
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  be the subgraph of  G  induced by  
[image: image99.wmf]1

()()

VHVG

Ç

.  Because  
[image: image100.wmf]1

G

  is an induced subgraph of  G,  
[image: image101.wmf]1

H

  is a subgraph of  
[image: image102.wmf]1

G

.  Thus, because  
[image: image103.wmf]1

G

,  L,  and  (  satisfy Hall’s condition, we have





[image: image104.wmf]1

1

()()

()()(,,)()

(,,)().

X

vVHvVH

X

vvxLHdx

xLHdx

kkam

am

ÎÎ

=£

=

åå

ò

ò


(

In other versions of Proposition 2, where assignments such as those giving the extensions of  L  and  (  in the proof are not allowed, define  L(v)  to be a set of relatively huge  (-measure, and  
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Finally we remark that in the measurable spaces that are of interest in this paper (atomless, semifinite and positive), it makes no difference whether the “=” in (ii) is replaced by “(”.  However, for other measure spaces it does make a difference.  For example, consider the case where  (  is the counting measure on an infinite set  X.  The usual list multicolouring described in the first section can be regarded as a special case of  (X, (, ()  list multicolouring, in which  X = C,  (  is the collection of all subsets of  C  (even though only finite subsets are assigned), and  (  is the counting measure.  In the first section,  (  is required to be integer valued, but here and in the rest of the paper  (  is only required to be real and non-negative.  If  X = C,  (  is the counting measure, and “=” in (ii) is replaced by “(”,  then there is a proper  (L, ()-colouring of  G  if and only if there is a proper  
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  and let  L  assign the same singleton to both vertices of  G.  Then Hall’s condition is satisfied, yet no proper  (L, ()-colouring is possible.  The foundation of this irritating example becomes clear when one observes that  
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We also notice that if  (  is the counting measure, then  
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  is not  CGL(()  [cf. the main result, below].  In fact, by ploughing through the definitions carefully, we can see that  
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  denotes the graph with  n  vertices and no edges).

3.
The Main Result

Theorem.   If  
[image: image115.wmf](,,)

X

m

p

  is atomless and semifinite, then  
[image: image116.wmf]0

CGL()

m

=

k

.

Proof:  First we shall show that  
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Figure 1


It is clear that no proper  (L, ()-colouring of  G  is possible.  To see that  
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  for each proper induced subgraph  H  of  G.  For the case  H = G,  observe that
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Figure 2


This is a case in which it is quite easy to see that Hall’s condition is satisfied, but not entirely trivial to see that no proper  (L, ()-colouring of  G  is possible.  To see this, suppose that  (  is a proper  (L, ()-colouring of  G ;  let  
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Before moving on to the last stage of the proof, it is worth noting that the preceding gives a proof of this part of the Theorem, that  
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The interest in this proof is the promise it holds of practical feasibility in this proof.  Following it, we see that, given  G,  L,  and  (  with each inequality  
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If  D  contains two of the  
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Whether or not  
[image: image459.wmf]1

u

  is a cut-vertex of  G,  let  
[image: image460.wmf]1

D

  be the block of  G  containing  
[image: image461.wmf]1

u

  which might possibly contain other vertices  v  such that  
[image: image462.wmf]()

v

Y

  is not a characteristic function.  If  
[image: image463.wmf]1

()

()1

Y

vVD

v

Î

Y<

å

��

,  set  m = 1  and replace  
[image: image464.wmf]h

  by  
[image: image465.wmf]1

()

min,1()

Y

vVD

v

h

Î

éù

-Y

ëû

å

��

;  we are done.


So suppose that  
[image: image466.wmf]1

()

()1

Y

vVD

v

Î

Y=

å

��

.  (Because  (  satisfies (F3),  
[image: image467.wmf]1

()

()1

Y

vVD

v

Î

Y£

å

��

.)  Since  
[image: image468.wmf]1

()1

u

h

Y£-

  on  Y,  there must be some  
[image: image469.wmf]21

()

uVD

Î

  such that  
[image: image470.wmf]2

()0

u

Y>

  on a subset of  Y  of positive measure.  We have already noted that by (F3), and because  
[image: image471.wmf]1

()

u

h

Y³

  on  Y,  and because  
[image: image472.wmf]1

u

  and  
[image: image473.wmf]2

u

  are in the same block,  
[image: image474.wmf]2

()1

u

h

Y£-

  on  Y.  By standard arguments we can achieve  
[image: image475.wmf]2

()1

u

hh

£Y£-

  on  Y,  with old  
[image: image476.wmf]h

  possibly replaced by a new smaller  
[image: image477.wmf]0

h

>

,  and the old  Y  possibly replaced by a subset of it with positive measure.


If  
[image: image478.wmf]2

u

  is not a cut-vertex of  G,  take  m = 2  and we are done.  Otherwise, let  
[image: image479.wmf]2

D

  be the block of  G  other than  
[image: image480.wmf]1

D

  containing  
[image: image481.wmf]2

u

.  If  
[image: image482.wmf]2

()

()1

Y

vVD

v

Î

Y<

å

��

  replace  
[image: image483.wmf]h

  by  
[image: image484.wmf]()

2

min,1()

Y

vVD

v

h

Î

éù

-Y

ëû

å

��

,  take  m = 2,  and we are done.  Suppose that  
[image: image485.wmf]2

()

()1

Y

vVD

v

Î

Y=

å

��

.  By arguments advanced when we were in this case with  
[image: image486.wmf]1

u

  and  
[image: image487.wmf]1

D

,  there must be some  
[image: image488.wmf]322

()\{}

uVDu

Î

  such that  
[image: image489.wmf]3

0()1

u

h

<Y£-

  on a subset of  Y  of positive measure.  Again, by standard arguments, we can assume that  
[image: image490.wmf]3

()1

u

hh

£Y£-

  on  Y,  for a possibly smaller  
[image: image491.wmf]0

h

>

  and a new  Y,  a subset of the old  Y,  still of positive measure.  If  
[image: image492.wmf]3

u

  is not a cut-vertex of  G,  take  m = 3  and we are done.  Otherwise, on to the next block,  
[image: image493.wmf]3

D

,  the block on the other side of  
[image: image494.wmf]3

u

  from  
[image: image495.wmf]2

D

.


Since  G  is finite, this process, if we have got this far, will end at some  
[image: image496.wmf]m

u

,  
[image: image497.wmf]3

m

³

,  which is in the same block  
[image: image498.wmf]1

m

D

-

  of  G  as  
[image: image499.wmf]1

m

u

-

,  and which is either not a cut-vertex of  G  (in which case we are done), or, if it is a cut-vertex, then the block  
[image: image500.wmf]m

D

  containing  
[image: image501.wmf]m

u

  other than  
[image: image502.wmf]1

m

D

-

  satisfies  
[image: image503.wmf]()

()1

Y

vVD

m

v

Î

Y<

å

��

.  In this case replace the current value of  (  by  
[image: image504.wmf]()

min,1()

Y

vVD

m

v

h

Î

éù

-Y

ëû

å

��

,  and we are done.

(





There is one other fundamental piece of unfinished business concerning list multicolourings with measurable sets from atomless, semifinite measure spaces that we are in a position to settle now.  Cropper, Gyárfás, and Lehel, in [3], actually prove a stronger theorem than Theorem CGL, a result which , when combined with a result in [8], enables us to consider graphs with cut-vertices which are in more than two blocks.

Theorem CGL(.   Suppose that  G  is a simple graph and  
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Evidently because there is greater freedom in devising list assignments when one is assigning measurable sets from atomless measure spaces, the analogue of Theorem CGL( in the world of such assignments is much less interesting than Theorem CGL(.
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From the theorem of this section it then follows that the pairs  (G, (),  as above, for which the satisfaction of Hall’s condition by a list assignment  L,  as above, is sufficient for the existence of a proper  (L, ()-colouring, are just the pairs for which  
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The awkward, uncolourable-from list assignments to  
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Let the vertices of  
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Then  L  is defined by
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We leave it to the reader to verify that  
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,  L,  and  (  satisfy Hall’s condition, and that there is no proper  (L, ()-colouring of  
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