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Abstract

A (d, d+1)-graph is a graph whose vertices all have degrees in the
set {d, d + 1}. Such a graph is semiregular. An (r, r +1)-factorization
of a graph G is a decomposition of G into (r, r + 1)-factors. For d-
regular simple graphs G we say for which x and r G must have an
(r, r + 1)-factorization with exactly x (r, r + 1)-factors. We give simi-
lar results for (d, d+1)-simple graphs and for (d, d+1)-pseudographs.
We also show that if d ≥ 2r2 + 3r − 1, then any (d, d + 1)-multigraph
(without loops) has an (r, r + 1)-factorization, and we give some in-
formation as to the number of (r, r +1)-factors which can be found in
an (r, r + 1)-factorization.
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1 Introduction

We use the terminology simple graph for a graph with no loops or multiple
edges, multigraph for a graph in which multiple edges are allowed but not
loops, and pseudograph for when both loops and multiple edges are allowed.

An (r, r+1)-pseudograph is a graph whose degrees are all either r or r+1;
in a pseudograph, a loop counts two towards the degree of the vertex it is on.
An (r, r+1)-factor of a pseudograph G is an (r, r+1)-subpseudograph which
spans G. An (r, r+1)-factorization of a pseudograph G is a decomposition of
G into edge-disjoint (r, r + 1)-factors of G. If there are no vertices of degree
r+ 1 in an (r, r+ 1)-factor, we may refer to it as an r-factor. Similarly an r-
factorization is an (r, r+1)-factorization in which none of the (r, r+1)-factors
actually have any vertices of degree r + 1.

Our main concern in this paper is to determine for which values of d, r
and x, a (d, d+1)-graph may have an (r, r+1)-factorization with x (r, r+1)-
factors.

Lovász [18] and Tutte [24] both gave proofs of the result that either was,
or was equivalent to, the statement that any d-regular pseudograph has an
(r, r + 1)-factor for each r ∈ {0, 1, ..., d− 1}. In both cases, their result was
intended to be just an illustration of a deeper theorem. Thomassen [23] later
gave a simple proof of the more general statement:

Theorem 1. (Thomassen). Every (d, d + 1)-pseudograph has an (r, r + 1)-
factor for each r ∈ {0, 1, ...d− 1}.

Lovász noted that, in the case of a simple graph, his result followed easily
from Vizing’s theorem [25]. In Section 2 we develop this connection further
and show how some interesting facts about (r, r + 1)-factorizations follow
quite easily for d-regular simple graphs. To a certain extent, these facts
provide the motivation for much of the discussion in this paper.
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This discussion is also motivated by some further known results. On the
question of the existence of (r, r+1)-factorizations of d-regular simple graphs,
Era [6] and Egawa [5] proved the following result.

Theorem 2. If G is a d-regular simple graph and

d ≥
{
r2 if r is even,
r2 + 1 if r is odd,

then G has an (r, r + 1)-factorization.

The result is best possible in the sense that the lower bound cannot
be lowered even by 1. (However it should be noted that there are some
lower values of d for which all d-regular simple graphs have an (r, r + 1)-
factorization; trivially if d = r or r + 1, but also d = 2r + 1, for example, as
shown in Lemma 30.)

For (r, r+ 1)-factorizations of (d, d+ 1)-multigraphs, Akiyama and Kano
[2] and Cai [3] proved the following nice result (their results were actually
more general than this).

Theorem 3. If G is a (d, d+ 1)-multigraph and

d ≥
{

3r2 + r if r is even,
3(r + 1)2 if r is odd,

then G has an (r, r + 1)-factorization.

This result is not best possible, and, in Theorem 29, we shall give a better
result (which is also not best possible).

Further known results are:

Theorem 4. (Petersen). Let r be even and let r|d. Then any d-regular
pseudograph has an r-factorization into d

r
r-factors.

Another result for regular graphs is due to Hilton [14].

Theorem 5. (Hilton). Let G be a d-regular simple graph with |V (G| even,
let d ≥ 1

2
|V (G)| and let r|d, r > 1. Then G has an r-factorization into d

r

r-factors.

The requirement that d ≥ 1
2
|V (G)| cannot be removed if r > 1 is odd.

The One-Factorization Conjecture [2] is that Theorem 5 is also true if r = 1.

An easy result which follows by colouring the edges of an Eulerian circuit
alternately with two colours is:

Theorem 6. (Folklore). Let d = 2r and let G be a connected d-regular
pseudograph with |V (G)| even if r is odd. Then G has an r-factorization
into d

r
= 2 r-factors.
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2 Simple d-regular graphs

2.1 Initial discussion

In this section we make some preliminary observations about d-regular simple
graphs; these observations serve partly to motivate further the main results
in this paper.

The first result is a simple deduction from Vizing’s theorem [25].

Theorem 7. Let r + 1|d + 1. Then a d-regular simple graph G has an
(r, r + 1)-factorization into d+1

r+1
(r, r + 1)-factors.

Proof. By Vizing’s theorem, the chromatic index χ′(G) of G satisfies χ′(G) ≤
d+ 1. Therefore we may colour the edges of G with d+ 1 colours so that no
two edges incident with the same vertex have the same colour. Now collect
the edges of the colours used into (d+1)/(r+1) sets, each containing all the
edges of r + 1 colours. Form the union of each set of edges of r + 1 colours.
This union is an (r, r+ 1)-factor of G, and the set of all (d+ 1)/(r+ 1) such
unions is an (r, r + 1)-factorization.

There is a companion result to Vizing’s theorem due to Gupta [9]. Recall
that the cover index κ′(G) of a graph G is the greatest number j of colours
that one can colour the edges of G with so that, at each vertex, there is at
least one edge of each colour. Gupta’s theorem is that κ′(G) ≥ δ(G)− 1 for
simple graphs G, where δ(G) is the minimum degree of G. For a deduction of
Gupta’s theorem from Vizing’s theorem, via the inequality χ′(G) + κ′(G) ≥
2δ(G), see [13].

We can use Gupta’s theorem to obtain a theorem strikingly similar to
Theorem 7, but not the same.

Theorem 8. Let r|d − 1. A d-regular simple graph G has an (r, r + 1)-
factorization into (d− 1)/r (r, r + 1)-factors.

Proof. By Gupta’s theorem, the cover index κ′(G) satisfies κ′(G) ≥ d − 1.
Thus the edges of G can be coloured with d−1 colours in such a way that, at
each vertex, there is at least one edge of each colour. Now collect the edges
into (d− 1)/r sets, each of all the edges of r colours. Form the union of each
set of edges of r colours. This union is an (r, r + 1)-factor, and the set all
(d− 1)/r such unions is an (r, r + 1)-factorization.

Let us illustrate Theorems 7 and 8 with an example. If d = 29 and r = 4,
then, by Theorem 7, G is the union of 6 (4, 5)-factors, and, by Theorem 8,
G is the union of 7 (4, 5)-factors. Similarly if d = 29 and r = 2, then G is
the union of 10 (2, 3)-factors and of 14 (2, 3)-factors.
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If r + 1 | d + 1 then a d-regular graph cannot be the union of fewer than
(d + 1)/(r + 1) (r, r + 1)-factors. For suppose that a graph G is the union
of x < (d + 1)/(r + 1) (r, r + 1)-factors. Then x ≤ (d + 1)/(r + 1) − 1 =
(d − r)/(r + 1), so the maximum degree is at most x(r + 1) ≤ d − r, a
contradiction. Similarly if r|d − 1 and r > 1 then a d-regular graph cannot
be the union of more than (d−1)/r (r, r+1)-factors. For if a graph G were the
union of y > (d−1)/r (r, r+1)-factors then y ≥ (d−1)/r+1 = (d+r−1)/r,
and so the minimum degree of G is ry ≥ d+ r − 1 > d.

We shall prove the following result about d-regular simple graphs when
r | d− 1 and r + 1 | d+ 1.

Theorem 9. Let r, d, x ∈ Z+, let G be a simple d-regular graph and let r ≥ 2,
r | d− 1 and r+ 1 | d+ 1. Then G has an (r, r+ 1)-factorization with exactly
x (r, r + 1)-factors if and only if

d+ 1

r + 1
≤ x ≤ d− 1

r
.

In fact, this is a specialization of the next result, where we do not assume
the divisibility conditions.

Theorem 10. Let G be a simple d-regular graph and let r ≥ 2.

(i) G has an (r, r + 1)-factorization with exactly x (r, r + 1)-factors if

d

r + 1
< x <

d

r

or if r is odd and x = d
r+1

,

or if r is even and x = d
r
.

(ii) If r is even and r+1 | d, then there are d-regular simple graphs G which
are, and d-regular simple graphs G which are not (r, r+ 1)-factorizable
into x = d

r+1
(r, r + 1)-factors;

if r is odd and r | d, then there are d-regular simple graphs G which
are, and d-regular simple graphs G which are not (r, r+ 1)-factorizable
into x = d

r
(r, r + 1)-factors.

(iii) If x /∈ [ d
r+1

, d
r
] then no d-regular simple graph is (r, r + 1)-factorizable

into x (r, r + 1)-factors.
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The proof of Theorem 10 is placed after the proof of Theorem 15.

Proof of Theorem 9 (assuming Theorem 10).
If d+1

r+1
≤ x ≤ d−1

r
then d

r+1
< x < d

r
, so by Theorem 10 G has an (r, r + 1)-

factorization into x (r, r + 1)-factors. The remarks before Theorem 9 show
that G has no (r, r + 1)-factorization into x (r, r + 1)-factors if x > d−1

r
or

x < d+1
r+1

.

An additional remark concerning Theorem 10(ii). Suppose G is connected.
Whether r is even and r + 1 | d or r is odd and r | d, if x = 2 then G has an
(r, r + 1)-factorization into x (r, r + 1)-factors if and only if |V (G)| is even.

Proof of additional remark. Suppose first that r is even, r + 1 | d and
x = 2 = d

r+1
. IfG has an (r, r+1)-factorization into two (r, r+1)-factors, then

both (r, r+1)-factors must be (r+1)-factors. Since |E(G)| = |V (G)|(r+1),
|E(G)| is even if and only if |V (G)| is even. If |E(G)| is even, then we can
obtain an (r+1)-factorization by assigning alternate edges of an Eulerian cir-
cuit to the one (r+1)-factor, the remaining edges to the other (r+1)-factor.
If E(G) is odd then |V (G)| is odd, and so G has no (r + 1)-factor.

Next suppose that r is odd, r | d and x = 2 = d
r
. If G has an (r, r + 1)-

factorization into two (r, r+ 1)-factors, then both the (r, r+ 1)-factors must
be r-factors. The argument is now very similar to that above.

2.2 The Era-Egawa theorem

From Theorem 10 we can deduce easily the Era-Egawa result (Theorem 2).
Let φ(r) be the smallest integer such that, if d ≥ φ(r), then any d-regular
simple graph has an (r, r + 1)-factorization. Theorem 2 together with the
assertion that Theorem 2 is best possible, can be expressed in the following
way:

Theorem 11.

φ(r) =

{
r2 if r is even ,
r2 + 1 if r is odd .

Proof. Suppose first that r is even. From Theorem 10 it follows that each
d-regular simple graph has an (r, r + 1)-factorization if and only if there is
an integer x such that

d

r + 1
< x ≤ d

r
.

We first note that if d = r2 − 1 there is no such integer x; for if there were
such an integer x then x ≤ r2−1

r
, so x ≤ r−1. But on the other hand, d

r+1
=

6



r2−1
r+1

= r − 1 so x ≥ r, a contradiction. Therefore φ(r) ≥ r2. Now suppose
that d ≥ r2. Let x be defined by d = xr + s, where 0 ≤ s ≤ r − 1. Then
d
r

= x+ s
r
≥ x. Since d ≥ r2, it follows that x ≥ r. Since d = x(r+1)−x+s,

we have d
r+1

= x−
(

x−s
r+1

)
< x since x− s ≥ r − s > 0. Therefore φ(r) = r2.

Next suppose that r is odd. By Theorem 10 it follows that each d-regular
simple graph has an (r, r + 1)-factorization if and only if there is an integer
x such that

d

r + 1
≤ x <

d

r
.

We first note that if d = r2 there is no such integer x; for if there were such
an integer x then x ≥ r2

r+1
= r − 1 + 1

r+1
, so x ≥ r. But on the other hand

x < r2

r
= r, a contradiction. Therefore φ(r) ≥ r2+1. Now suppose d ≥ r2+1.

Let x be defined by d = xr+ s, where 1 ≤ s ≤ r. Then d
r

= x+ s
r
> x. Since

d ≥ r2 +1 it follows that x ≥ r. Since d = x(r+1)−x+s, we then have that
d

r+1
= x−

(
x−s
r+1

)
≤ x, since x− s ≥ r − s ≥ 0. Therefore φ(r) = r2 + 1.

3 Edge-colourings

An edge-colouring of a pseudograph G is a map φ : E(G) → C , where C is
a set of colours; here loops are included as edges. Thus an edge-colouring is
just a partition of the edge-set. An edge-colouring is equitable if∣∣∣|α(v)| − |β(v)|

∣∣∣ ≤ 1

∀ v ∈ V (G) and ∀α, β ∈ C , where α(r), β(r) denote the sets of edges of
colours α, β incident with the vertex v; here a loop on v coloured α counts as
two edges on v. We notice that an (r, r+1)-factorization of a (d, d+1)-graph
G with x (r, r+1)-factors is just an equitable colouring of G with x colours.

3.1 Bipartite (d, d+ 1)-multigraphs

We can use the following simple result of McDiarmid [19] and de Werra [26]
to bound the number of (r, r + 1)-factors of bipartite (d, d+ 1)-multigraphs.

Theorem 12. Let k ≥ 1 be an integer and let G be a bipartite multigraph.
Then G has an equitable edge-colouring with k colours.

A corollary of this is:

Theorem 13. Let G be a bipartite (d, d + 1)-multigraph. Then G has an
(r, r + 1)-factorization into x (r, r + 1)-factors if and only if
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d
r+1

< x < d+1
r

,

or

x = d
r+1

and G is d-regular,

or

x = d+1
r

and G is (d+ 1)-regular.

Proof. It is shown in an easy argument in Theorem 18(b) in Section 5 that if
G has an (r, r+ 1)-factorization into x (r, r+ 1)-factors, then the inequality

d
r+1

≤ x ≤ d+1
r

is satisfied. If x = d
r+1

, then clearly G has to be d-regular,

and if x = d+1
r

, then clearly G has to be (d + 1)-regular. This proves the
necessity.

For the sufficiency, notice that if G is d-regular and x = d
r+1

, then G
has an (r + 1)-factorization with x (r + 1)-factors, and that if G is (d + 1)-
regular and x = d+1

r
, then G has an r-factorization with x r-factors. Thus,

in both cases, G has an (r, r+ 1)-factorization with x (r, r+ 1)-factors. Now
suppose that d

r+1
< x < d+1

r
. Then r ≤ d

x
and d+1

x
≤ r + 1, so an equitable

edge-colouring with x colours yields an (r, r+1)-factorization with x (r, r+1)-
colours.

3.2 Equitable edge-colourings of simple (d, d+1)-graphs

The following quite difficult theorem of Hilton and de Werra [15] will be
used to bound the number of (r, r + 1)-factors of simple (d, d + 1)-graphs.
Let the k-core of a graph G be the subgraph induced by the vertices v such
that k | dG(v). (The term k-core has been used in this sense in a number
of papers, but one of the referees has pointed out that k-core has also been
used for the largest induced subgraph of minimum degree at least k.) The
theorem of Hilton and de Werra is:

Theorem 14. Let k be a positive integer and let G be a simple graph. If
the k-core of G contains no edges, then G has an equitable colouring with k
colours.

4 Simple (d, d + 1)-graphs

4.1 The number of (r, r + 1)-factors

We use Theorem 14 to prove the difficult part of Theorem 15, namely part
(i).
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Theorem 15. Let d, r ∈ Z+.

(i) If x ∈ Z and d+1
r+1

< x < d
r
,

or x =

{
d
r

if r is even,

d+1
r+1

if r is odd,

then any simple (d, d + 1)-graph G has an (r, r + 1)-factorization into
x (r, r + 1)-factors.

(ii) If x ∈ Z, x ≥ 2 and

x =

{
d
r

if r is odd,

d+1
r+1

if r is even,

then some simple (d, d+1)-graphs do and some do not have an (r, r+1)-
factorization into x (r, r + 1)-factors.

(iii) If x ∈ Z, x /∈ [d+1
r+1

, d
r
], then the only simple (d, d + 1)-graphs G having

an (r, r + 1)-factorization into x (r, r + 1)-factors occur when{
x = d

r+1
and G is d-regular,

x = d+1
r

and G is (d+ 1)-regular.

Moreover, when these conditions pertain, some but not all such graphs
have an (r, r + 1)-factorization.

Note the following consequence of Theorem 15 (iii) (although it is easier to
use Theorem 18(b)).

Corollary 16. Let r, d, x ∈ Z+ and x /∈ [ d
r+1

, d+1
r

]. Then no (d, d+ 1)-graph
is the union of x (r, r + 1)-factors.

Proof of Theorem 15.

(i) First suppose that x 6= d
r

or d+1
r+1

. Then d+1
r+1

< x < d
r

, so r < d
x
< d+1

x
<

r + 1, and so x - d and x - d+ 1. Therefore the x-core of G is empty, so, by
Theorem 14, G has an equitable edge-colouring with x colours. Since r < d

x

and d+1
x
< r + 1, it follows that this equitable edge-colouring with x colours

is the required (r, r + 1)-factorization with x (r, r + 1)-factors.
The remaining cases in part (i), when x ∈

{
d
r
, d+1

r+1

}
, are particular cases

of Theorem 18(a)(i) or 18(a)(ii), which is stated and proved in Section 5.
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(ii) If G is a d-regular Class 1 simple graph (Class 1 means that χ′(G) = d),
and if r|d, then clearly G has an r-factorization into d

r
factors. Similarly if

G is a (d + 1)-regular Class 1 simple graph and r + 1 | d + 1 then clearly G
has an (r + 1)-factorization into d+1

r+1
factors. Thus in either case we have a

(d, d+1)-simple graph with an (r, r+1)-factorization into x (r, r+1)-factors.
To provide examples where there is no such factorization, we consider two

cases.

Case 1. r is odd and x = d
r
≥ 2.

Suppose that d is odd. We shall construct a d-regular simple graph G
which has no (r, r+1)-factorization into x (r, r+1)-factors. Let A1, . . . , Ad be
disjoint (d−1, d)-simple graphs of odd order, with each Ai having exactly one
vertex, ai, of degree d− 1; this is possible since d is odd. Let a be a further
vertex, and let G be the graph formed by joining a to each of a1, . . . , ad.
Then G is a d-regular simple graph. If G had an (r, r + 1)-factorization into
x (r, r + 1)-factors, then each of the (r, r + 1)-factors would be an r-factor.
But as x ≥ 2, one of these r-factors would not contain the edge a a1, and so
it would have a component of odd order as a subgraph of A1. As r is odd,
this is impossible.

[Note. We can vary this construction so that G is not d-regular.]

Next suppose that d is even. Let G be a d-regular simple graph of odd
order. Since G is d-regular, if G were the union of x = d

r
(r, r + 1)-factors,

then all these (r, r+1)-factors would be r-factors. But as r is odd and |V (G)|
is odd, this is impossible.

Case 2. r is even and x = d+1
r+1

≥ 2.
Suppose that d is even. We construct a (d, d + 1)-simple graph G which

has no (r, r + 1)-factorization into x (r, r + 1)-factors. The construction is
similar to one in the previous case. Let A1, . . . , Ad be disjoint (d, d + 1)-
simple graphs of odd order with each Ai having exactly one vertex, ai, of
degree d; since d is even, this is possible. Let a be a further vertex and form
G by joining a to each of a1, . . . , ad. Then G has exactly one vertex of degree
d, namely a; also |V (G)| is odd. If G had an (r, r + 1)-factorization into x
(r, r+1)-factors, then x−1 of these (r, r+1)-factors would be (r+1)-factors.
But since r + 1 is odd and |V (G)| is odd, this is impossible.

Next suppose that d is odd. Let G be a (d + 1)-regular graph of odd
order. Since G is (d + 1)-regular, if G had an (r, r + 1)-factorization into x
(r, r + 1)-factors, then all these (r, r + 1)-factors would be (r + 1)-factors.
Again this is impossible since r + 1 is odd and |V (G)| is odd.

(iii) If x /∈
[

d+1
r+1

, d
r

]
, then either x < d+1

r+1
or x > d

r
.
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Suppose first that x < d+1
r+1

. Then r + 1 < d+1
x

, so if a vertex has degree
d + 1, then it cannot be the union of x (r, r + 1)-factors. But if G were
d-regular and G were the union of x (r, r + 1)-factors, then these factors
would have to be (r + 1)-factors, and x would have to satisfy x = d

r+1
. If

(r+1) is even, then, by Theorem 4 (Petersen’s theorem), G has an (r, r+1)-
factorization into x (r, r + 1)-factors. If (r + 1) is odd and d is odd, we
can construct a d-regular simple graph which does not have an (r, r + 1)-
factorization into x (r, r + 1)-factors. The construction is the same as that
in part (ii), Case 1, with very minor changes.

Now suppose that x > d
r
. Then r > d

x
, so if a vertex has degree d, then

it cannot be the union of x (r, r + 1)-factors. If G were (d + 1)-regular and
G were the union of x (r, r+ 1)-factors, then these factors would have to be
r-factors, and x would have to satisfy x = d+1

r
. If r is even, then, by Theorem

4, G has an (r, r+1)-factorization into x (r, r+1)-factors. If r is odd and d+1
is odd, then there are d-regular simple graphs with no (r, r+1)-factorization
into x (r, r + 1)-factors. Their construction is similar to that in part (ii),
Case 2.

4.2 Application to d-regular simple graphs

We use Theorem 15 to prove Theorem 10.

Proof of Theorem 10.
(i) By Theorem 15(i), G has an (r, r + 1)-factorization if d+1

r+1
< x < d

r
, or if

x = d
r

and r is even, or if x = d+1
r+1

and r is odd.

We may suppose that x 6= 1. If x = d+1
r+1

then r + 1 = d+1
x

> d
x
> r, so

x - d. Therefore, by Theorem 14, G has an equitable edge-colouring with x
colours. Each colour class is an (r, r + 1)-factor, and the equitable colouring
is an (r, r + 1)-factorization with x (r, r + 1)-factors.

It remains to consider the cases d
r+1

< x < d+1
r+1

and x = d
r+1

, r odd. The
first of these is empty since we have d < x(r+1) < d+1. The second follows
from Theorem 4 (Petersen’s theorem), since r + 1 is even.

In the proof of Theorem 15(ii), there are suitable examples of regular
simple graphs which have (r, r + 1)-factorizations into x (r, r + 1)-factors
[replace the occurrences of ‘d+ 1’ in that proof by ‘d’ in this proof].

(ii) If r is odd, r| d and x = d
r
, the d-regular graphs considered in the proof

of Theorem 15(ii), Case 1, provide suitable examples.
If r is even, r + 1 | d and x = d

r+1
, then in any (r, r + 1)-factorization of

G into x (r, r+ 1)-factors, all the (r, r+ 1)-factors are (r+ 1)-regular. Then

11



the d-regular graphs considered in the proof of Theorem 15(ii), Case 1, will
again suffice (with r odd being replaced in the argument by r + 1 odd).

(iii) If x < d
r+1

, then the union of x (r, r+1)-graphs has maximum degree at

most x(r + 1) < d. Similarly if x > d
r
, then the union of x (r, r + 1)-graphs

has minimum degree at least xr > d.

4.3 An analogue for (d, d+1)-simple graphs of the Era-
Egawa theorem

We can use the argument of Theorem 11 to give an analogue for (d, d + 1)-
simple graphs of the Era-Egawa result. Let ψ(r) be the smallest integer
such that, if d ≥ ψ(r), then any (d, d + 1)-simple graph has an (r, r + 1)-
factorization. Clearly ψ(r) ≥ φ(r).

Theorem 17.

ψ(r) =

{
r(r + 1) when r is even,
r(r + 1) + 1 when r is odd.

Proof. Suppose first that r is even. From Theorem 15 it follows that each
(d, d + 1)-simple graph has an (r, r + 1)-factorization if and only if there is
an integer x such that

d+ 1

r + 1
< x ≤ d

r
.

We first note that if d = r(r + 1) − 1 then there is no such integer x. For

if there were such an x, then x ≤ r(r+1)−1
r

, so x ≤ r + 1 − 1
r
, so, as x is an

integer, x ≤ r. But on the other hand d+1
r+1

= r, so x > r, a contradiction.
Therefore ψ(r) ≥ r(r + 1). Now suppose that d ≥ r(r + 1). Note that

d

r
− d+ 1

r + 1
=

d− r

r(r + 1)
>

r2 − 1

r(r + 1)
=
r − 1

r
.

Hence
d+ 1

r + 1
<
d

r
− r − 1

r
≤

⌊
d

r

⌋
<
d

r
.

So x =
⌊

d
r

⌋
is the required integer. Therefore ψ(r) = r(r + 1).

Now suppose that r is odd. From Theorem 15, it follows that each
(d, d + 1)-simple graph has an (r, r + 1)-factorization if and only if there
is an integer x such that

d+ 1

r + 1
≤ x <

d

r
.

12



We first note that if d = r(r + 1) then there is no such integer x. For if

there were such an x, then x < r(r+1)
r

= r + 1, so x ≤ r. But on the other

hand, x ≥ d+1
r+1

= r(r+1)+1
r+1

= r+ 1
r+1

, so x ≥ r+1, a contradiction. Therefore
ψ(r) ≥ r(r + 1) + 1. Now suppose that d ≥ r(r + 1) + 1. Note that

d

r
− d+ 1

r + 1
=

d− r

r(r + 1)
>

r2

r(r + 1)
=

r

r + 1
.

Hence
d+ 1

r + 1
≤

⌈
d+ 1

r + 1

⌉
≤ d+ 1

r + 1
+

r

r + 1
<
d

r
,

so x =
⌈

d+1
r+1

⌉
is the required integer. Therefore ψ(r) = r(r + 1) + 1.

5 Pseudographs

5.1 (d, d+ 1)-pseudographs

The (r, r + 1)-factorization properties for (d, d + 1)-pseudographs contrast
very noticeably with the (r, r+1)-factorization properties for (d, d+1)-simple
graphs. The position is described in the following theorem.

Theorem 18.

(a) Let G be a (d, d+ 1)-pseudograph. Then

(i) If r is even, r| d and x = d
r
, then G has an (r, r+ 1)-factorization

into x (r, r + 1)-factors;

(ii) If r is odd, r + 1 | d + 1 and x = d+1
r+1

, then G has an (r, r + 1)-
factorization into x (r, r + 1)-factors.

(b) If x /∈
[

d
r+1

, d+1
r

]
then no (d, d + 1)-pseudograph has an (r, r + 1)-

factorization into x (r, r + 1)-factors.

(c) If x ∈
[

d
r+1

, d+1
r

]
but x, r, d do not satisfy (a)(i) or (a)(ii) then there

are examples of (d, d + 1)-pseudographs which do and examples which
do not have an (r, r + 1)-factorization into x (r, r + 1)-factors.

Thus condition (a) of Theorem 18 is very restrictive, contrasting with the
comparatively unrestrictive conditions of Theorem 15(i).

For the proof of Theorem 18 we recall the following theorem of König
[15].
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Theorem 19. Let G be a bipartite multigraph. Then χ′(G) = ∆(G), where
∆(G) denotes the maximum degree of G.

Proof of Theorem 18.

(a) We may assume that x ≥ 2.

(a)(i) Let E be a maximal set of independent edges such that each edge of E
joins a pair of vertices of degree d+ 1. Let A be the set of vertices of G−E
which have degree d + 1. If A = φ then we can pass straight to the point
marked (*) in the next paragraph. Otherwise A is a non-empty independent
set. Let L be a set of loops such that no vertex has more than one loop of
L on it, and each loop of L is incident with a vertex of degree (in G − E)
d + 1. Then V (L) ⊆ A. Now let B be the induced bipartite subgraph of
G− E with vertex sets A− V (L) and V (G)− A. Each vertex of A− V (L)
has degree (in B) d + 1, and each vertex of V (G) − A has degree (in B)
at most d. By Theorem 19 (König’s theorem) χ′(B) = d + 1, so B can be
properly edge-coloured with d + 1 colours. Taking any colour class gives us
a matching M from A− V (L) into V (G)− A.

The graph G − (E ∪ L ∪ M) is a (d − 1, d)-pseudograph. Since r is
even, it follows that d is also even. Pair off the vertices of degree d − 1,
and join each pair by a new edge; let N be the set of new edges. Then
(G− (E ∪ L ∪M) )+N is regular of degree d. (*) By Theorem 4 (Petersen’s
theorem), (G − (E ∪ L ∪M) ) + N is r-factorizable into x = d

r
r-factors.

Removing the edges of N , we see that G−(E∪L∪M) is (r−1, r)-factorizable
into x (r − 1, r)-factors. Each vertex which has degree r − 1 in one of the
(r− 1, r)-factors has perforce degree r in all the other r-factors; also no loop
of L is incident with a vertex which is incident with any edge of M . Therefore
we can assign the edges of L ∪M to the various (r − 1, r)-factors in such a
way that G−E is (r, r+1)-factorized into x (r, r+1)-factors. For each edge
e ∈ E, the vertices incident with e have degree r in all the (r, r + 1)-factors;
therefore they can be assigned arbitrarily to the (r, r + 1) factors of G− E,
and produce an (r, r + 1)-factorization of G into x (r, r + 1)-factors.

(a)(ii) As r is odd, r+ 1 is even, so d+ 1 is even, and so d is odd. Therefore
G has an even number of vertices of degree d. We pair these vertices off,
and then join the vertices of each such pair by a further edge. Let E be the
set of all such further edges. Then G + E is a (d + 1)-regular pseudograph.
By Theorem 4 (Petersen’s theorem), G+E is the union of x = d+1

r+1
(r + 1)-

factors. Now remove the edges of E from each of these (r+ 1)-factors. Then
G is expressed as the union of x (r, r + 1)-factors.
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(b) Suppose that G is a (d, d+ 1)-pseudograph and that G has an (r, r+ 1)-
factorization with x (r, r + 1)-factors. If x < d

r+1
then x(r + 1) < d, so the

maximum degree of G is less than d, a contradiction. Similarly if x > d+1
r

then xr > d + 1, so the minimum degree of G is greater than d + 1, a
contradiction. Therefore x ∈

[
d

r+1
, d+1

r

]
.

(c) First we show that, whenever x ∈
[

d
r+1

, d+1
r

]
but x, r, d do not satisfy

(a)(i) or (a)(ii), then nonetheless there are examples of (d, d+1)-pseudographs
which do have a factorization into x (r, r + 1)-factors.

By Theorem 15(i), if d+1
r+1

< x < d
r
, or if x = d

r
when r is even, or

x = d+1
r+1

when r is odd, then any (d, d + 1)-simple graph is the union of x
(r, r + 1)-factors.

If x = d
r

and r is odd, then we can construct a suitable d-regular pseu-
dograph G with |V (G)| = 2m by letting G be the union of x r-regular
pseudographs of order 2m. A similar construction works if x = d+1

r
. If

x = d+1
r+1

and r is even, then we may let G be the union of x (r + 1)-regular

pseudographs of order 2m, and if x = d
r+1

a similar construction also works.

There are no further values of x satisfying d
r+1

≤ x ≤ d+1
r

for if d
r+1

<

x < d+1
r+1

then d < x(r + 1) < d + 1, which is impossible, and it is similarly

impossible for x to satisfy d
r
< x < d+1

r
.

Next we show that whenever x ∈
[

d
r+1

, d+1
r

]
but x, r, d do not satisfy

(a)(i) or (a)(ii), then there are examples of (d, d+ 1)-pseudographs which do
not have an (r, r + 1)-factorization into x (r, r + 1)-factors.

We consider two cases. We may suppose that x ≥ 2.

Case 1. r even. Then we have that x ∈
[

d
r+1

, d+1
r

]
and either r - d, or r| d

but x 6= d
r
.

If d is even but r - d, then let G have one vertex and d
2

loops. Clearly G
has no (r, r + 1)-factorization.

If d is odd, then r - d. If also r - d− 1, let G have two vertices, a and b,
let a and b be joined by exactly one edge, and let a and b both have 1

2
(d− 1)

loops on them. Then G is d-regular. Suppose G has an (r, r+1)-factorization
into x (r, r+1)-factors. Since r is even, all except one of the (r, r+1)-factors
are r-regular, and the remaining (r, r + 1)-factor must be an (r + 1)-factor.
Therefore r| d− 1, a contradiction.

If d is odd, so that r - d, but r| d−1, and if r 6= 2, let G be a pseudograph
with one vertex and d+1

2
loops on it. Then each (r, r+ 1)-factor must in fact

be an r-factor, so r| d+ 1. But this is impossible since r| d− 1 and r 6= 2.
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Now suppose that d is odd and r = 2. Let G have two components, G1

and G2. Let G1 consist of one vertex, a, with d+1
2

loops on it. Let G2 consist
of two vertices, b and c, with one edge joining b and c, and d−1

2
loops on each

of b and c. The only (r, r + 1)-factorization of G1 consists of d+1
2

2-factors
(each a loop). Thus the only possibility for x is x = d+1

2
. But then G2 cannot

be decomposed into d+1
2

(2, 3)-factors as its highest degree is d.
Now suppose that r| d but x 6= d

r
. Since r is even, d is also even. Let

G be a graph with one vertex and d
2

loops on it. Then the only (r, r + 1)-
factorization of G that can exist is one in which each factor is an r-factor,
and there are exactly d

r
such r-factors. But x 6= d

r
.

Case 2. r odd. Then we have that x ∈
[

d
r+1

, d+1
r

]
and either r + 1 - d+ 1, or

r + 1| d+ 1 but x 6= d+1
r+1

.

If d is odd and r + 1 - d + 1, let G have one vertex with 1
2
(d + 1) loops

on it. Clearly G has no (r, r + 1)-factorization.
If d is even, then r + 1 - d + 1. If also r + 1 - d + 2, let G have two

vertices, a and b, each with 1
2
d loops on them, and let a and b be joined by

one edge. Then G is (d + 1)-regular. Since r + 1 is even, all except one of
the (r, r + 1)-factors is an (r + 1)-factor, and the remaining (r, r + 1)-factor
must be an r-factor. Therefore r + 1| d+ 2, a contradiction.

If d is even, r+1 - d+1, but r+1| d+2 and r 6= 1, let G have one vertex
with d

2
loops on it. Each (r, r+1)-factor of G must be an (r+1)-factor, so if

G had an (r, r + 1)-factorization then (r + 1)| d. But this is impossible since
r + 1| d+ 2 and r 6= 1.

If d is even and r = 1 (so that r + 1 = 2), let G have two components
G1 and G2. Let G1 have one vertex, a, with d

2
loops on it, and let G2 have

two vertices, b and c, each with d
2

loops on them, and let G2 have one edge
joining b and c. The only (r, r + 1)-factorization that G1 could have is the
(r + 1)-factorization of G1 into d

2
(r + 1)-factors. But then the maximum

degree of G2 is d + 1, which is too high to be contained in the union of d
2

(1, 2)-factors.

5.2 d-regular pseudographs

In the case of d-regular pseudographs, we can modify Theorem 18 to get the
following analogue of Theorem 10.

Theorem 20.

(a) Let G be a d-regular pseudograph. Then G has an (r, r+1)-factorization
into x (r, r + 1)-factors in the following cases:
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(i) r even, r| d and x = d
r
,

(ii) r even, r| d− 1 and x = d−1
r

,

(iii) r odd, r + 1| d and x = d
r+1

,

(iv) r odd, r + 1| d+ 1 and x = d+1
r+1

.

(b) If x /∈
[

d
r+1

, d
r

]
, then no d-regular pseudograph has an (r, r + 1)-facto-

rization into x r-factors.

(c) If x ∈
[

d
r+1

, d
r

]
, but x, r, d do not satisfy any of (a)(i)-(a)(iv), then

there are examples of d-regular pseudographs which do and examples
of d-regular pseudographs which do not have an (r, r + 1)-factorization
into x (r, r + 1)-factors.

Proof. (of Theorem 20)

(a) (i) and (iii) follow from Theorem 18(a)(i) and (a)(ii) respectively. In
fact in (i) the factors are r-regular, and in (iii) the factors are (r + 1)-
regular.

In the case of (ii) we have that r is even, r| d − 1 and x = d−1
r

. By
Theorem 1, the pseudograph G has an (r, r + 1)-factor F . The pseu-
dograph G − E(F ) is a (d − r − 1, d − r)-pseudograph. Note that
r| d−r−1, so, by Theorem 18, G−E(F ) has an (r, r+1)-factorization
into d−r−1

r
(r, r+1)-factors. Therefore G has an (r, r+1)-factorization

into d−r−1
r

+ 1 = d−1
r

factors.

In the case of (iv) we have that r is odd, r + 1| d + 1 and x = d+1
r+1

.
Since r is odd, r+1 is even, so d+1 is even, and so d is odd. Therefore
|V (G)| is even, so we can pair off all the vertices. We join each of these
pairs of vertices by an extra edge. Let E be the set of all the extra
edges. Then G+E is regular of degree d+1. By Theorem 4 (Petersen’s
theorem), G + E has an (r + 1)-factorization into d+1

r+1
(r + 1)-factors.

Removing the edges of E leaves an (r, r + 1)-factorization of G into
(r, r + 1)-factors.

(b) This is the same as the proof of Theorem 10(iii).

(c) We show first that if x ∈
[

d
r+1

, d
r

]
, but if x, r, d do not satisfy any of

(a)(i)-(a)(iv), then there are examples of d-regular pseudographs which
have an (r, r + 1)-factorization into x r-factors. By Theorem 10(i), if
G is a simple graph and d

r+1
< x < d

r
, or if r is odd and x = d

r+1
,

or if r is even and x = d
r
, then G has an (r, r + 1)-factorization into
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x (r, r + 1)-factors. If r is even and x = d
r+1

, then we may form a d-
regular pseudograph of even order from x (r+1)-regular pseudographs
on the same vertex set. Similarly if r is odd and x = d

r
, we form a

d-regular pseudograph of even order from x r-regular pseudographs on
the same vertex set.

Next we show that whenever x ∈
[

d
r+1

, d
r

]
but x, r, d do not satisfy any

of (a)(i)-(a)(iv), then there are examples of d-regular pseudographs which do
not have an (r, r+ 1)-factorization into x (r, r+ 1)-factors. We consider two
cases.

Case 1. r even. We consider the possibilities that r - d − 1 and r - d, or
r| d− 1 and x 6= d−1

r
or r| d and x 6= d

r
.

If d is even, then a suitable example is provided by one vertex with d
2

loops on it. This has only one (r, r + 1)-factorization, and this is when r| d
and x = d

r
.

If d is odd, a suitable example is provided by a pseudograph with two
vertices a and b, each with d−1

2
loops on it, and with a and b joined by one

edge. This has only one (r, r+ 1)-factorization, and this is when r| d− 1 and
x = d−1

r
; there are x− 1 r-factors and one (r + 1)-factor.

Case 2. r odd. We consider the possibilities that r + 1 - d and r + 1 - d+ 1,
or r + 1| d and x 6= d

r+1
, or r + 1| d+ 1 and x 6= d+1

r+1
.

If d is even, then a suitable example is provided by one vertex with d
2

loops on it. This has only the (r, r+1)-factorization with d
r+1

(r+1)-factors.
If d is odd, a suitable example is provided by a pseudograph with two

vertices, a and b, each with d−1
2

loops, and with one edge joining a and b.
This has only the (r, r + 1)-factorization with

(
d+1
r+1

− 1
)

(r + 1)-factors and

one r-factor, making d+1
r+1

factors in all.

6 d-regular multigraphs (without loops)

6.1 Bounds on the number of (r, r + 1)-factors

As each multigraph is also a pseudograph (a pseudograph without loops).
Theorem 20(a) gives some cases in which a d-regular multigraph has an
(r, r + 1)-factorization into x (r, r + 1)-factors. However much more is true
when no loops are present.

First we note the following additional bounds for the number of (r, r+1)-
factors in an (r, r + 1)-factorization of a d-regular multigraph.
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Lemma 21. Let G be a d-regular multigraph of odd order, 2n+1, let 1 ≤ r <
d, and suppose that G has an (r, r+1)-factorization into x (r, r+1)-factors.
Then

(a) x ≤ d(2n+1)
r(2n+1)+1

if r is odd,

(b) x ≥ d(2n+1)
(r+1)(2n+1)−1

if r is even.

Proof.

(a) Since |V (G)| = 2n+ 1, which is odd, we have that when r is odd, each
(r, r + 1)-factor has at least one vertex of degree r + 1 so the number

of edges in an (r, r + 1)-factor is at least (2n+1)r+1
2

. The total number

of edges is d(2n+1)
2

, so x ≤ d(2n+1)
(2n+1)r+1

.

(b) Similarly, when r is even, each (r, r + 1)-factor has at least one vertex
of degree r so the number of edges in an (r, r + 1)-factor is at most
(2n+1)(r+1)−1

2
. The total number of edges is d(2n+1)

2
, so x ≥ d(2n+1)

(r+1)(2n+1)−1
.

The argument which establishes the bounds for the number of (r, r + 1)-
factors in an (r, r + 1)-factorization of a simple graph G given in Theorem
10 also gives the same bounds if G is a multigraph. Combining this with
Lemma 21 we obtain:

Theorem 22. Let G be a d-regular multigraph, let 1 ≤ r < d, and suppose
that G has an (r, r + 1)-factorization into x (r, r + 1) factors. Then

(i) If |V (G)| is even and r is even then

d

r + 1
< x ≤ d

r
.

(ii) If |V (G)| is even and r is odd, then

d

r + 1
≤ x <

d

r
.

(iii) If |V (G)| = 2n+ 1 and r is even, then

d(2n+ 1)

(r + 1)(2n+ 1)− 1
≤ x ≤ d

r
.
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(iv) If |V (G)| = 2n+ 1 and r is odd, then

d

r + 1
≤ x ≤ d(2n+ 1)

r(2n+ 1) + 1
.

Notice that the bounds of Lemma 21 really are stronger than those of
d

r+1
≤ x ≤ d

r
. For example, suppose that G has three vertices and 29 edges

between each pair of vertices; then d = 58. If r = 3 then the bound x ≤ d
r

tells us only that x ≤ 19, whereas the bound of Lemma 21 tells us that
x ≤ 17. Similarly, if r = 2 then the bound x ≥ d

r+1
tells us only that x ≥ 20,

whereas the bound of Lemma 21 tells us that x ≥ 22.
The converse of Theorem 22 is not true in the sense that there are values

of x satisfying the various inequalities and d-regular graphs G for which G
does not have an (r, r + 1)-factorization into x (r, r + 1)-factors.

Theorem 23. Let x satisfy the inequalities of Theorem 22, but let

(i) x < 3d
3r+2

if d and r are even;

(ii) x > 3d
3r+1

if d is even and r is odd;

(iii) x < 3d−1
3r+2

if d is odd and r is even;

(iv) x > 3d+1
3r+1

if d and r are odd.

Then there are d-regular multigraphs G which do not have an (r, r + 1)-
factorization into x (r, r + 1)-factors.

Proof. First suppose that d is even. Consider a d-regular multigraph G with
a component C of order 3 in which each pair of vertices is joined by d

2
edges.

By Theorem 22(iii) if r is even, or by Theorem 22(iv) if r is odd, C does not
have an (r, r + 1)-factorization into x (r, r + 1)-factors, and so neither does
G.

Next suppose that d is odd. Consider a d-regular multigraph with a
component C of order 6 with vertices ai1, ai2, ai3 (i = 1, 2). Suppose that,
for i = 1, 2, ai1 is joined to each of ai2 and ai3 by d−1

2
edges, and that ai2

and ai3 are joined by d+1
2

edges. Also suppose that a11 and a21 are joined by
an edge.

If r is odd, then in any (r, r + 1)-factorization of G, there are two possi-
bilities for the factor F of G containing the bridge a11 a21. One possibility
is that F consists of the bridge a11 a21,

r−1
2

edges joining a11 to each of a12

and a13, and r+1
2

edges joining a12 to a13. The other possibility is that F
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contains the bridge a11 a21,
r+1
2

edges joining a12 to each of a11 and a13, and
r−1
2

edges joining a11 and a13, or an isomorphic graph with r+1
2

edges joining
a13 to each of a11 and a12, and r−1

2
edges joining a12 and a13. The graph

G − F contains in the one case a component C ′ which is (d − r)-regular of
order 3 on the vertices a11, a12 and a13, and in the other case a component
C ′′ in which a13 is joined to each of a11 and a12 by d−r

2
edges, and a11 and a12

are joined by d−r
2
− 1 edges, or a multigraph isomorphic to this; C ′′ is thus

a (d − r − 1, d − r)-multigraph with one vertex of degree d − r and two of
degree d− r − 1.

In the first case, if G has an (r, r+1)-factorization into x (r, r+1)-factors
in which one of the factors is F , then by applying Theorem 22(iv) to C ′ we

see that x− 1 ≤ 3(d−r)
3r+1

so that x ≤ 3d+1
3r+1

. In the second case, from Theorem

27(iv) applied to C ′′, it follows that x− 1 ≤ 3(d−r)
3r+4

so x ≤ 3d−2
3r+4

. Theorem 27

does not, of course, depend on this theorem. It now follows that if x > 3d+1
3r+1

then there are d-regular multigraphs with no (r, r + 1)-factorization into x
(r, r + 1)-factors.

Now suppose that r is even (and that d is still odd). There are three pos-
sibilities for the factor F of G containing the bridge a11 a21. One possibility
is that F contains the bridge a11 a21,

r
2
− 1 edges joining a11 to a12,

r
2

edges
joining a11 to a13, and r

2
+ 1 edges joining a12 to a13. The second possibility

is that F contains the bridge a11 a21, and r
2

edges joining each of the pairs
{a11, a12}, {a11, a13}, {a12, a13}. The third possibility is that F contains the
bridge a11a21,

r
2

edges joining a11 to each of a12 and a13, and r
2
+1 edges join-

ing a12 to a13. In the first two cases, the graph G−F contains a component
C ′′ which is a (d−r−1, d−r)-multigraph with one vertex of degree d−r−1
and two of degree d − r. In the third case G − F contains a component C ′

which is (d− r − 1)-regular of order 3 on the vertices a11, a12 and a13.
In the first and second cases, if G has an (r, r + 1)-factorization into x

(r, r+ 1)-factors in which one of the factors is F , then by applying Theorem

27(iii) to C ′′ it follows that x − 1 ≥ 3(d−r−1)
3r+2

so that x ≥ 3d−1
3r+2

. In the third

case, by applying Theorem 22(iii) to C ′ it also follows that x ≥ 3d−1
3r+2

.

In the light of Theorems 22 and 23, we make the following conjecture.

Conjecture 1. Let x, d and r be integers with d ≥ r ≥ 1. If x, d and r
satisfy the appropriate inequality below, then any d-regular multigraph has
an (r, r + 1)-factorization with x (r, r + 1)-factors.

(i) d and r are even and 3d
3r+2

≤ x ≤ d
r

;

(ii) d is even and r is odd, and d
r+1

≤ x ≤ 3d
3r+1

;
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(iii) d is odd and r is even, and 3d−1
3r+2

≤ x ≤ d
r

;

(iv) d is odd and r is odd, and d
r+1

≤ x ≤ 3d+1
3r+1

.

In the constructions in the papers of Era [6] and Egawa [5] which form
the basis of the proof of the next theorem, Theorem 24, we may observe that
x =

⌊
d
r

⌋
if r is even (cases (i) and (iii) of Conjecture 1) and x =

⌈
d

r+1

⌉
if r is

odd (cases (ii) and (iv) of Conjecture 1).

6.2 An analogue for d-regular multigraphs of the Era-
Egawa theorem

We have not been able to obtain a complete analogue of Theorem 11 for
d-regular multigraphs. Let φm(r) be the smallest integer such that, if d ≥
φm(r), then any d-regular multigraph has an (r, r + 1)-factorization. The
subscript m in φm(r) stands for ‘multigraph’.

Theorem 24. φm(0) = 0, φm(2) = 2 and, if r is even, r ≥ 4, then

3

2
r2 − 2r ≤ φm(r) ≤ 2r2 − 3r .

If r is odd, then
φm(r) = r2 + 1 .

Theorem 24 shows that φm(4) = 20; it also shows that φm(r) = φ(r) when r
is odd, but Theorem 11 and Theorem 24 show that φ(r) 6= φm(r) when r is
even, r ≥ 4.

Proof of Theorem 24. Let us remark that Era’s paper [6] refers for its defi-
nitions to Harary [10] for whom ‘graph’ means ‘simple graph’, and so Era’s
paper is almost explicitly about simple graphs. Egawa’s paper [5] is explicitly
about simple graphs. Nonetheless everything in Era’s paper works perfectly
for multigraphs (but not pseudographs), and some of Egawa’s paper works
for multigraphs.

If r is odd, we learn by reading Era’s Proposition 2 and taking his ‘graphs’
to be ‘multigraphs’ that r2 + 1 ≤ φm(r) ≤ r2 + 2, and the proof is completed
by reading part (ii) of Egawa’s theorem with ‘graphs’ meaning ‘multigraphs’.

Now suppose that r is even. The result is easy if r = 0 or 2, so let r ≥ 4.
Part (i) of Egawa’s theorem does not apply here, as it only works for simple
graphs. The upper bound φm(r) ≤ 2r2 − 3r comes from Era’s Proposition
1 read with ‘graphs’ meaning ‘multigraphs’. It remains to prove the lower
bound.
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We first show that if d = 3
2
r2 − ar − 2, where a = 3 or 4, and if G is a

regular multigraph of order 3 with three multiple edges, each of multiplicity
3
4
r2 − ar

2
− 1, then G is not the edge-disjoint union of (r, r + 1)-factors.

The only possible (r, r + 1)-factors in this case are the regular multigraph
of degree r in which each edge has multiplicity r

2
, and an (r, r + 1)-factor

in which one edge has multiplicity r
2

+ 1, and the other two edges have
multiplicity r

2
. Since G is regular, the non-regular factors have to come in

sets of three arranged so that their union gives a regular multigraph of order
3 and degree 3r + 2, each edge having multiplicty 3

2
r + 1. But we note that

if 0 ≤ x ≤ 1
2
(r− 4) then r -

(
3
2
r2 − ar − 2)

)
− x(3r+ 2). When x = 1

2
(r− 4)

then
(

3
2
r2 − ar − 2

)
− x(3r + 2) = (5 − a)r + 2 < 3r + 2 since a ∈ {3, 4}.

Therefore G has no (r, r + 1)-factorization.
Next we show that if d = 3

2
r2−2r−1 then there is a d-regular multigraph

H which has no (r, r+ 1)-factorization. Let H be the multigraph with order
6, vertex set {a, b, c, a′, b′, c′}, and edge-set consisting of a bridge cc′, edges
ab and a′b′ having multiplicity 3

4
r2 − r, and edges ac, bc, a′c′, b′c′ having

multiplicity 3
4
r2 − r − 1. In any (r, r + 1)-factor F containing the bridge cc′,

the submultigraph induced by {a, b, c, d} is one of the multigraphs shown in
Figure 1.

Suppose that an (r, r+1)-factorization of H contained a factor F with A
as an induced submultigraph. Then the union of the remaining factors would
be a multigraph whose restriction to {a, b, c} would be a regular multigraph
of degree 3

2
r2 − 3r − 2. But, as we just showed, such a multigraph has no

(r, r+ 1)-factorization. Thus we may suppose that no submultigraph of F is
isomorphic to A.

Suppose the (r, r+1)-factor F had B as an induced submultigraph. Then
the union of the remaining factors would be a multigraph whose restriction to
{a, b, c} would be a multigraph J with edge ab having multiplicity 3

4
r2 − 3

2
r

and edges ac and bc having multiplicity 3
4
r2 − 3

2
r − 1. The removal of an

(r, r + 1)-factor from J consisting of an edge ab with multiplicity r
2

+ 1 and
edges ab and ac with multiplicity r

2
would leave a regular multigraph of degree

3
2
r2 − 4r − 2. But we have shown that such a multigraph does not have an

(r, r + 1)-factorization. Thus we may also suppose that no subgraph of F is
isomorphic to B.

Finally, suppose the (r, r + 1)-factor F had C as an induced subgraph.
Then the union of the remaining factors would have edge ab with multiplicity
3
4
r2 − 3

2
r − 1 and edges bc and ca with multiplicity 3

4
r2 − 3

2
r. Thus the

components of this union would each be isomorphic to the multigraph J in
the paragraph above. But we showed that J has no (r, r + 1)-factorization.

It follows that H has no (r, r + 1)-factorization, so φm(r) ≥ 3
2
r2 − 2r, as

asserted.
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Figure 1: The multigraphs A, B and C.
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It seems likely that the lower bound 3
2
r2 − 2r ≤ φm(r) in Theorem 24 is

the correct value of φm(r). The next theorem shows that the value 3
2
r2 − 2r

is probably at least not far from being the correct value of φm(r).

Theorem 25. If r and d are both even, r ≥ 4, d ≥ 3
2
r2 − 2r − 2, then any

d-regular multigraph has an (r, r + 1)-factorization.

Proof of Theorem 25. If we read ‘graph’ to mean ‘multigraph’, then the
statement and proof of Proposition 1 part (1) of Era’s paper [6] gives this
result.

To complete the evaluation of φm(r), we need to show that the inequality
3
2
r2 − 2r ≤ φm(r) is true if r is even and d is odd.

7 (d, d + 1)-multigraphs (without loops)

7.1 Bounds on the number of (r, r + 1)-factors

The analogue of Lemma 21 in this case is:

Lemma 26. Let G be a (d, d+1)-multigraph of odd order 2n+1, let 1 ≤ r ≤
d, and suppose that G has an (r, r+1)-factorization into x (r, r+1)-factors.
Then

(a) x ≤ (d+1)(2n+1)
r(2n+1)+1

if r is odd,

(b) x ≥ d(2n+1)
(r+1)(2n+1)−1

if r is even.

Proof. (a) This is similar to the proof of Lemma 21(a), noting that the total
number of edges is at most 1

2
(d+ 1)(2n+ 1).

(b) This is similar to the proof of Lemma 21(b), noting that the total

number of edges is at least d(2n+1)
2

.

Using Lemma 26 and the argument for Theorem 15(iii) we obtain:

Theorem 27. Let G be a (d, d + 1)-multigraph, let 1 ≤ r < d, and suppose
that G has an (r, r + 1)-factorization into x (r, r + 1)-factors. Then

(i) If |V (G)| is even and r is even, then

d+ 1

r + 1
< x ≤ d

r
;
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(ii) If |V (G)| is even and r is odd, then

d+ 1

r + 1
≤ x <

d

r
;

(iii) If |V (G)| = 2n+ 1 and r is even, then

d(2n+ 1)

(r + 1)(2n+ 1)− 1
≤ x ≤ d

r
;

(iv) If |V (G)| = 2n+ 1 and r is odd, then

d+ 1

r + 1
≤ x ≤ (d+ 1)(2n+ 1)

(r + 1)(2n+ 1) + 1
.

There are values of x satisfying the inequalities of Theorem 27 and (d, d+
1)-multigraphs G for which G does not have an (r, r + 1)-factorization into
x (r, r + 1)-factors.

Theorem 28. Let x satisfy the inequalities of Theorem 27, but

(i) x < 3d+2
3r+2

if d and r are even;

(ii) x > 3d
3r+1

if d is even and r is odd;

(iii) x < 3d+3
3r+2

if d is odd and r is even;

(iv) x > 3d+1
3r+1

if d and r are odd.

Then there are (d, d + 1)-multigraphs which do not have an (r, r + 1)-facto-
rization into x (r, r + 1)-factors.

Proof. We can apply the bounds of Theorem 23 since a d-regular multigraph
is also a (d, d + 1)-multigraph. Similarly we can also apply the bounds of
Theorem 23 slightly indirectly, with d+ 1 replacing d, since a (d+ 1)-regular
multigraph is also a (d, d+ 1)-multigraph. Thus, if d and r are even, then if

x < max

{
3d

3r + 2
,

3(d+ 1)− 1

3r + 2

}
=

3d+ 2

3r + 2
,

there are (d, d+ 1)-multigraphs which do not have an (r, r+ 1)-factorization
into x (r, r + 1)-factors. The similar bound if d is even and r is odd is

x > min

{
3d

3r + 1
,

3(d+ 1) + 1

3r + 1

}
=

3d

3r + 1
.
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If d is odd and r is even, the bound is

x < max

{
3d− 1

3r + 2
,

3(d+ 1)

3r + 2

}
=

3d+ 3

3r + 2
.

If d is odd and r is odd, the bound is

x > min

{
3d+ 1

3r + 1
,

3(d+ 1)

3r + 1

}
=

3d+ 1

3r + 1
.

7.2 An analogue for (d, d + 1)-multigraphs of the Era-
Egawa theorem

Let ψm(r) be the smallest integer such that, if d ≥ ψm(r), then any (d, d +
1)-multigraph has an (r, r + 1)-factorization. Theorem 3 (the theorem of
Akiyama and Kano, and of Cai) shows that

ψm(r) ≤
{

3r2 + r if r is even,
3(r + 1)2 if r is odd.

We prove the following analogue of Theorems 17 and 24, giving bounds for
ψm(r) which are better, but still not best possible.

Theorem 29. Let r ∈ Z , r ≥ 1. Then
3
2
r2 − 2r ≤ ψm(r) ≤ 2r2 + r − 1

if r is even, and
r(r + 1) + 1 ≤ ψm(r) ≤ 2r2 + 3r − 1

if r is odd.

Proof. The proof uses various results which we have yet to prove.
The upper bound follows from Corollary 31 (or Lemma 30) if r is even,

and from Lemmas 32 and 34 if r is odd.
When r is even, the lower bound follows from the same lower bound in

Theorem 24. Similarly, when r is odd, the lower bound follows from the same
lower bound in Theorem 17.

Lemma 30. Let r be even and let d = qr + s − 1 for some s ≥ 1 where
q, r and s are integers. If q ≥ 2s then any (d, d + 1)-multigraph G has an
(r, r + 1)-factorization with q (r, r + 1)-factors.

Corollary 31. If r is even then ψm(r) ≤ 2r2 + r − 1.
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Proof. 2r2 + r − 1 = max1≤s≤r(2s)r + s− 1.

Proof of Lemma 30.
We remark that we could restrict s so that s ≤ r, but the argument works

without this restriction; this fact is used in the proof of Lemma 39.
By Theorem 1, G has a (d− s, d− s+ 1)-factor, i.e. a (qr − 1, qr)-factor

J . Let J be maximal and let H = G − E(J). Then the vertices of H have
degrees (in H) in the set {s− 1, s, s+ 1}.

Let W be the set of vertices of minimum degree, qr − 1, in J . Then,
in H, W is an independent set, because if two vertices of W are joined in
H, then the edge can be removed from H and put into J , contradicting the
maximality of J . By Theorem 18(a)(ii), J has an (r−1, r)-factorization into
q (r − 1, r)-factors, A1, ..., Aq. For 1 ≤ i ≤ q, let Wi be the set of vertices
of Ai of degree (in Ai) r − 1. Then the Wi are pairwise disjoint sets, and
W = W1 ∪ ... ∪Wq.

Now let B be a bipartite graph with bipartition (W,V (H) −W ) whose
edges are the edges of H which are incident with the vertices of W . Then
the vertices in W have degrees s or s+1, and the vertices of V (H)−W have
degrees at most s. By Theorem 12, B has an equitable edge-colouring with
s colours. From any one of these colour sets, we can choose a matching M
from W into V (H)−W . Let Mi be the subset of M consisting of those edges
of M which are incident with Wi. The factors Ai∪Mi are all (r, r+1)-factors
of G.

We must now add all the edges of H −M to these (r, r + 1)-factors so
that all edges are used, but all the factors remain (r, r + 1)-factors. We do
this by properly colouring the edges of H greedily with q colours c1, ..., cq,
starting with the edges of Mi which we colour ci (1 ≤ i ≤ q). If we wish to
colour an uncoloured edge e joining two vertices u and v, then at most s− 1
colours occur on the edges of one of u and v, say u, and at most s colours
occur on the edges on v (this is because W is an independent set). Since
q ≥ 2s, there is a colour available to colour e with.

When H is properly edge-coloured with c1, ..., cq, we let A+
i be Ai together

with all the edges of H coloured ci (1 ≤ i ≤ q). Then A+
1 , ..., A

+
q is the

required (r, r + 1)-factorization of G.

Lemma 32. Let d and r both be odd positive integers with d ≥ 2r2−3. Then
any (d, d+ 1)-multigraph has an (r, r + 1)-factorization.

Proof. Let d + 1 = (r + 1)q + s + 2 where 0 ≤ s < r, let N = q + s− r + 2
and let M = r+1

2
− s

2
− 1. Then s is even, so M is a non-negative integer

and s < r. Since d ≥ 2r2 − 3, we have that (r + 1)q + s + 1 ≥ 2r2 − 3, so
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(r+1)q ≥ 2r2−s−4 ≥ 2r2−r−3 = (2r−3)(r+1), so q ≥ 2r−3. Therefore

N − 2M = q − 2r + 2s+ 3 ≥ 2s ≥ 0 ,

so N ≥ 2M .
Note also that (r + 1)N + 2rM = (r + 1)q + s+ 2 = d+ 1.
We may also note that, as s < r, so s+ 1 < r + 1, and so q =

⌊
d

r+1

⌋
.

Let G be a (d, d+1)-multigraph and G̃ a (d+1)-regular multigraph with
G as an induced submultigraph, i.e. deleting the vertices of V (G̃) − V (G)
in G̃ gives G. [We shall use the tilde to denote submultigraphs of G̃ which
contain vertices of V (G̃)−V (G). For a submultigraph Q̃ of G̃, its restriction
to G will be denoted by Q, i.e. by omitting the tilde. Note that Q̃ = Q
if and only if V (Q̃) = V (Q).] By Theorem 4 (Petersen’s theorem), since
d + 1 = (r + 1)N + 2rM , we can decompose G̃ into N (r + 1)-factors
D̃1, ..., D̃N and M 2r-factors H̃1, ..., H̃M . If M = 0 then D1, ..., DN is the
required (r, r + 1)-factorization, so we shall suppose from now that M > 0.

For each i, 1 ≤ i ≤ M , consider the components C̃ of H̃i. Since 2r is
even, each such component is Eulerian. Starting at any edge on the Eulerian
circuit, we can choose a direction, and then, going round the circuit in this
direction, we can colour the edges alternately α and β. If |E(C̃)| is even
then both the α-submultigraph A(C̃) and the β-submultigraph B(C̃) are
r-regular. The number |E(C̃)| is odd if |V (C̃| is odd since r is odd and
|E(C̃)| = 1

2

∑
v∈V (C̃) dC̃(v) = 1

2
× |V (C̃)| × 2r = |V (C̃)| × r. In this case

A(C̃) is an (r, r + 1)-multigraph which has exactly one vertex, the initial
vertex of the colouring, say s(C̃), of degree r+ 1, and B(C̃) is an (r− 1, r)-
multigraph which has exactly one vertex, again s(C̃), of degree r − 1. We
can choose which vertex of the component to have as s(C̃); unless C = C̃
(so that C̃ contributes no edges to G̃−G) we choose the vertices s(C̃) to lie
in V (G̃)− V (G).

From now on, if we refer to the vertex s(C) or the set V (C) (rather than
s(C̃) or V (C̃)), we shall be assuming that C = C̃ and |V (C)| is odd. However
A(C) and B(C) will be the restrictions of A(C̃) and B(C̃) to G.

Recall that N ≥ 2M . For 1 ≤ i ≤ M and for each component C̃ of H̃i,
we associate A(C̃) or B(C̃) with the (r+1)-factor D̃2i−1 or the (r+1)-factor
D̃2i as follows.

(a) If C = C̃ and |V (C)| is odd and, for all or all bar one vertices v ∈ V (C),
dD2i−1

(v) = r, then we associate A(C̃) with D̃2i−1 and associate B(C̃)

with D̃2i.

(b) If C 6= C̃ and |V (A(C))| ( = |V (B(C))| ) is odd and it should happen
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that
dDj

(v) = r ⇔ dQ(C)(v) = r (∀v ∈ V (C))

for some j ∈ {2i− 1, 2i} and some Q(C) ∈ {A(C), B(C)}, then we as-
sociateDj withR(C) andDk withQ(C), where {k} = {2i− 1, 2i}� {j}
and R(C) = {A(C), B(C)}� {Q(C)}.

(c) Otherwise we associate A(C̃) with D̃2i and B(C̃) with D̃2i−1.

Note that, in case (b), as C 6= C̃, if |V (C̃)| is odd then s(C̃) will be in
V (G̃)−V (G). Thus, whether |V (C̃)| is even or odd, all vertices of A(C) and
B(C) will have degrees r − 1 or r. Since |V (A(C))| (= |V (B(C))| ) is odd,
and since r is odd, not all vertices of A(C) or B(C) can have degree r, so at
least one of each will have degree r−1. Moreover, if a vertex has degree r−1
in A(C) (or B(C)), then it has degree r in B(C) (or A(C) respectively), and
has degree r + 1 in D2i−1 and D2i. Similarly if a vertex has degree r in one
of D2i−1 and D2i, then it has degree r + 1 in the other, and has degree r in
A(C) and B(C). It follows from all this that, in case (b),

dDj
(v) = r ⇒ dDj

(v) + dR(C)(v) = 2r + 1 (∀v ∈ V (A(C)))

and

dDk
(v) = r ⇒ dDk

(v) + dQ(C)(v) = 2r + 1 (∀v ∈ V (B(C))).

If C = C̃ and |V (C)| is odd, then we choose s(C) according to the
following rules.

(1) If dD2i−1
(v) = r + 1 for exactly one vertex v ∈ V (C), then s(C) is

chosen to be some other vertex w ∈ V (C). [Then dD2i
(s(C)) = r + 1.]

(2) If dD2i−1
(v) = r+1 for more than one vertex v ∈ V (C) and if dD2i

(w) =
r for some vertex w ∈ V (C), then we choose s(C) = w. [Then
dD2i−1

(s(C)) = r + 1.]

(3) If dD2i−1
(v) = r+1 for more than one vertex v ∈ V (C) and if dD2i

(w) =
r+1 for all w ∈ V (C), then we choose s(C) so that dD2i−1

(s(C)) = r+1.

(4) Otherwise we choose s(C) ∈ V (C) arbitrarily.

For 1 ≤ i ≤ M , we let P̃2i−1 be the union of D̃2i−1 and all its associated
multigraphs (A(C̃) or B(C̃), chosen as above) and we let P̃2i be the union of
D̃2i and its associated multigraphs. Consider a multigraph Pj (1 ≤ j ≤ 2M).
Of course Pj is a submultigraph of G. Because of the way Pj is defined, each
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vertex has degree 2r + 2, 2r + 1 or 2r. We can see this as follows. Clearly
no vertex has degree greater than 2r + 2. It is also clear that no vertex has
degree less than 2r − 1. But also, a vertex v cannot have degree 2r − 1 in
Pj. For suppose otherwise. Then dDj

(v) = r and C = C̃, |V (C)| is odd and
dB(C)(v) = r − 1 (so v = s(C)). Moreover, Pj contains B(C) as a subgraph.
Either j = 2i − 1 or j = 2i for some i, 1 ≤ i ≤ M . By construction,
if j = 2i − 1 then, since B(C) is associated with D2i−1, there are at least
two vertices v ∈ V (C) such that dD2i−1

(v) = r + 1, and so s(C) is chosen
according to (2). Therefore dD2i−1

(s(C)) = r + 1, and so dPj
(s(C)) = 2r,

i.e. dPj
(v) = 2r, a contradiction. Now suppose that j = 2i. Then B(C) is

associated with D2i. This happens if, for all or all bar one vertices v ∈ V (C),
dD2i−1

(v) = r. For such vertices, dD2i
(v) = r + 1. If all vertices v ∈ V (C)

satisfy dD2i−1
(v) = r, then dD2i

(v) = r+1 (∀v ∈ V (C)), so dD2i
(s(C)) = r+1.

If exactly one vertex v ∈ V (C) satisfies dD2i−1
(v) = r, then we chose s(C) by

(1), so that dD2i
(s(C)) = r + 1 again. Thus in either case dPj

(s(C)) = 2r, a
contradiction. Finally we remark that a vertex v can have degree 2r + 2 in
Pj only if dDj

(v) = r+ 1 and C = C̃, |V (C)| is odd and dA(C)(v) = r+ 1 (so
v = s(C)). In this case j = 2i for some i, 1 ≤ i ≤M .

Now pair off the vertices of Pj of degree 2r + 1 and join each pair by an
extra edge to form a multigraph P ∗

j . Then P ∗
j has degrees 2r or 2r + 2, so

each component K∗ of P ∗
j is Eulerian. Similarly to before, starting with any

edge we can colour the edges of an Eulerian circuit of K∗ alternately γ and δ.
We can also again choose the initial vertex. We obtain two submultigraphs,
the γ-coloured one, Γ(P ∗

j ), and the δ-coloured one, ∆(P ∗
j ). If |E(K∗)| is

even, then, at each vertex v of K∗, either both have γ- and δ-degree r + 1,
or both have γ- and δ-degree r. Moreover, in the multigraphs Γ(Pj) and
∆(Pj) obtained by removing the extra edges, if a vertex v had degree r in
Γ(P ∗

j ) and ∆(P ∗
j ), then it still has degree r. Thus Γ(Pj) and ∆(Pj) are both

(r, r + 1)-factors.
Let K be the component K∗ with the extra edges removed. Now suppose

that |E(K∗)| is odd and that K has a vertex v0 of degree 2r + 1. Then we
can choose the extra edge on v0 to be the initial edge of the Eulerian circuit
of K∗, so that the degree in Γ(P ∗) of v0 is r + 2 and the degree in ∆(P ∗) of
v0 is r. Then the degree in Γ(P ) of v0 is r + 1 and the degree in ∆(P ) is r.
The degrees of all the other vertices in Γ(P ) and ∆(P ) are r or r + 1.

Now suppose that |E(K∗)| is odd and that all the vertices of K have
degree 2r or 2r + 2. Then K∗ = K and no extra edges were added in. In
fact, this case cannot occur. For suppose it did occur. If K has a vertex of
degree 2r + 2 then, by the construction j = 2i for some i, dD2i

(v) = r + 1
and dA(C)(v) = r + 1 for some component C̃ of H̃i; moreover C = C̃, |V (C)|
is odd and v = s(C). If, for some vertex v ∈ V (C) − s(C), dD2i

(v) = r + 1

31



then dPj
(v) = 2r+ 1 since dA(C)(v) = r, a contradiction. So we may suppose

that dD2i
(v) = r for all v ∈ V (C) − s(C). But then dD2i−1

(v) = r + 1
for all v ∈ V (C) − s(C), and so s(C) was chosen according to (2), so that
dD2i

(s(C)) = r. Then dPj
(s(C)) = 2r + 1, again a contradiction. We need

finally to consider the possibility that all the vertices of K have degree 2r.
Since we are supposing that r is odd and |E(K)| is odd, it follows that |V (K)|
is odd, and so K incorporates an odd order multigraph, A(C) or B(C) for
some component C̃ of H̃i. First suppose that C 6= C̃. In this case (b) and
the remark about (b) directly after (c) apply, and show that this possibility
cannot arise. Now suppose that C = C̃. For only one j ∈ {2i− 1, 2i} can it
be true that dDj

(v) = r for all v ∈ V (C), and, by the construction and the
choice of s(C), A(C) is associated with such a Dj, so that dPj

(v) = 2r + 1
for at least one v ∈ V (C); thus dPj

(v) = 2r + 1 for at least one v ∈ V (K), a
contradiction.

Thus it follows that the multigraphs Pi (1 ≤ i ≤ M) can each be
factorized into two (r, r + 1)-factors. Together with the (r, r + 1)-factors
D2M+1, ..., DN , they give an (r, r + 1)-factorization of G, as required.

We need the next lemma in the proof of Lemma 34. First we give some
notation. If the edges of a pseudograph G are coloured α and β, let Gα be
the spanning subgraph of G whose edges are those coloured α in G; similarly
for Gβ. We call an edge-colouring of G with α and β equalized if ||E(Gα)| −
|E(Gβ)|| ≤ 1. For v ∈ V (G), let E(Gα(v)) be the set of edges incident with v
that are coloured α; similarly for E(Gβ(v)). We also recall some definitions.
A circuit is a connected pseudograph whose vertices all have even degree,
and a trail is a connected pseudograph with exactly two vertices having odd
degree. Note that a circuit is “Eulerian” in the sense that we can write down
a sequence v0, e0, v1, e1, v2, . . . , vi−1, ei−1, vi, ei, vi+1, . . . , vx, ex, vx+1 of vertices
and edges in such a way that each edge occurs exactly once, vertices may be
repeated, ei is incident with vi and vi+1, and v0 = vx+1. A trail has the same
property except that v0 6= vx+1.

Lemma 33. Let a pseudograph G have an equitable edge-colouring with two
colours, α and β. Then G has an edge-colouring with α and β which is both
equitable and equalized.

Proof. Let G be given an equitable edge-colouring with α and β, and sup-
pose that |E(Gα)| ≥ |E(Gβ)| + 2. Let v1, ..., vk be the vertices v such that
|E(Gα(v))| = |E(Gβ(v))| + 1 and let w1, ..., w` be the vertices w such that
|E(Gα(w))|+1 = |E(Gβ(w))|. For 1 ≤ i ≤

⌊
k
2

⌋
, join v2i−1 and v2i by an edge

coloured β, and, for 1 ≤ i ≤
⌊

`
2

⌋
, join w2i−1 and w2i by an edge coloured

α. Since v1, . . . , vk, w1, . . . , w` are the only vertices of odd degree, k + ` is
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even, and so k is odd if and only if ` is odd. If k and ` are both odd, then
introduce a further vertex u and join vk to u by an edge coloured β and join
w` to u by an edge coloured α.

Let G+ be the graph obtained. Each vertex of G+ has an equal number
of α-coloured edges as β-coloured edges incident with it. We shall show first
that G+ has an edge-disjoint decomposition into circuits C which have the
property that the (α, β)-edge-colouring ofG+ restricted to C is also equitable.
Thus at each vertex of C, the number of α-coloured edges of C equals the
number of β-coloured edges. The decomposition is obtained by separating
out equitably coloured circuits one by one.

To see that this can be done, suppose that we have removed circuits
C1, . . . , Ch, and that G∗ = G+ \E(C1 ∪ . . .∪Ch) and E(G∗) 6= φ. Note that
G∗ has the property that at each vertex there are as many edges coloured
α as there are edges coloured β. Let v0 ∈ V (G∗), let v0v1 ∈ E(G∗) and
suppose that v0v1 is coloured α. We may “grow” a trail v0, v1, v2, . . . , vi edge
by edge with the edges coloured alternately α and β. Since each vertex has
as many α-coloured edges on it as it has β-coloured edges, we may continue
to grow the trail until we reach v0 again with a final edge coloured β (we may
have earlier “passed through” v0, reaching v0 first with an α-coloured edge).
We then have a circuit Ch+1. [This is not the only way, but it seems to be
the simplest way to obtain a circuit.] Continuing this inductive process, we
eventually decompose G+ into edge-disjoint circuits.

The additional edges that we added in to form G+ from G may now be
removed. Thinking of the sequence property of circuits, we see that removing
some edges of a circuit will divide the circuit into edge-disjoint sections, and
each section is in fact a trail. Each circuit in our circuit decomposition of
G+ becomes in G either a circuit (if no edges are removed) or an edge-
disjoint union of trails. Thus G itself becomes the union of even circuits
and trails, each circuit and trail being alternately coloured α and β. Note
that each vertex of G will have odd degree in at most one trail (i.e. be
the end-vertex of at most one trail). Also note that if we interchange the
colours on any trail, then the edge-colouring of G will still be equitable. Since
||E(Gα)| − |E(Gβ)|| ≥ 2, there is at least one trail T1 with an odd number
of edges, with each end edge coloured α. We interchange the colours on the
edges of T1. Then G now has one more β-coloured edge than previously,
and one fewer α-coloured edge. If this revised edge-colouring of G is still
not equalized, there will be a second trail T2 with both ends coloured α. We
interchange the colours on the edges of T2. Continuing like this, we eventually
obtain an equalized and equitable edge-colouring of G.

Lemma 34. Let d and r be positive integers with d even, r odd and d ≥
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2r2 + 3r − 1. Then any (d, d+ 1)-multigraph has an (r, r + 1)-factorization.

Proof. Let d = (r + 1)q + s, where 0 ≤ s ≤ r, let N = q + s− r + 1 and let
M = r+1

2
− s

2
. Then s is even, so s ≤ r− 1 and M is a non-negative integer.

Since d ≥ 2r2 + 3r − 1 we have that (r + 1)q + s ≥ 2r2 + 3r − 1, so that
(r+1)q ≥ 2r2 +3r− s− 1 ≥ 2r2 +3r− (r− 1)− 1 = 2r2 +2r = 2r(r+1), so
q ≥ 2r. Therefore N −2M = q+ s− r+1− r−1+ s = q−2r+2s ≥ 2s ≥ 0,
so N ≥ 2M . Note also that (r + 1)(N − 1) + 2rM = (r + 1)q + s = d.

We may note that q =
⌊

d
r+1

⌋
.

Let G be a (d, d+1)-multigraph. Let H be a maximal (d− 1, d)-factor of
G, and let F = G−E(H). Then F is a graph whose components are isolated
vertices, or paths with one or two edges.

Let H̃ be a d-regular multigraph with H as an induced submultigraph.
[We shall again use the tilde to denote submultigraphs of H̃ which contain
vertices of V (H̃) − V (H). For a submultigraph Q̃ of H̃, its restriction to
H will be denoted by Q.] By Theorem 4 (Petersen’s theorem), since d =
(r + 1)(N − 1) + 2rM , we can decompose H̃ into (N − 1) (r + 1)-factors
D̃2, ..., D̃N and M 2r-factors H̃1, ..., H̃M .

Following the argument of Lemma 32, we can decompose each of Hi ∪
D2i−1 ∪D2i (2 ≤ i ≤ M) into four (r, r + 1)-factors. We shall show that we
can decompose F ∪H1∪D2 into three (r, r+1)-factors. These, together with
the (r, r + 1)-factors D2M+1, ..., DN constitute the (r, r + 1)-factorization of
G that we require.

Let the components of the multigraph H1 be C1, C2, ..., Ck. For 1 ≤ i ≤ k,
as we saw in Lemma 32, unless |E(Ci)| is odd and dCi

(v) = 2r (∀v ∈ V (Ci)),
Ci can be given an equitable edge-colouring with two colours, say α and β. By
Lemma 33, we can make this edge-colouring be equalized as well as equitable.
In the exceptional case, there is one vertex, s(Ci), such that, for v 6= s(Ci),
|α(v)| = |β(v)|, and, for v = s(Ci), ||α(v)| − |β(v)|| = 2; we shall suppose
that |α(s(Ci))| = |β(s(Ci))| + 2. [Here α(v) and β(v) mean the set of edges
of Ci incident with v coloured α or coloured β respectively.] Furthermore, we
can choose any vertex v ∈ V (Ci) to be s(Ci). We let A(Ci) and B(Ci) be the
spanning subgraphs of Ci whose edges are the edges of Ci coloured α and the
edges coloured β respectively. Since Ci is a (2r−1, 2r)-multigraph, it follows
that, except in the exceptional case, A(Ci) and B(Ci) are both (r − 1, r)-
multigraphs; moreover, since the edge-colouring of Ci was equalized, each of
A(Ci) and B(Ci) have at least one vertex of degree r. In the exceptional
case, we may suppose that B(Ci) is an (r − 1, r)-multigraph with exactly
one vertex, s(Ci), of degree r− 1, and A(Ci) is an (r, r+ 1)-multigraph with
exactly one vertex, again s(Ci), of degree r + 1.

Next we adjoin each edge of F to A(Ci) or to B(Ci) for some i, 1 ≤ i ≤ k,

34



as follows. Firstly, if Ci contains a vertex v of degree 2r− 1, then an edge ev

of F is incident with v; if v has degree r − 1 in A(Ci) then we adjoin ev to
A(Ci), and if v has degree r − 1 in B(Ci) then we adjoin ev to B(Ci).

I. If some edge e = uv of F has a vertex (say v) in common with an excep-
tional component Ci (i.e. a 2r-regular component Ci with an odd number of
edges, so that s(Ci) is defined; also v ∈ V (Ci)), then, for one such edge, we
choose s(Ci) = v, and we adjoin e to B(Ci). If the other end-vertex, u, of
e was in a submultigraph A(Cj) for some j, then we interchange the labels
A(Ci) and B(Ci). Then s(Ci) has degree r−1 in A(Ci) and is the end-vertex
of e.

We adjoin all further edges of F to the multigraph
⋃

1≤i≤k B(Ci).

II. Again, if at this stage some edge e = uv of F has a vertex (or vertices)
in common with an exceptional component Ci (or exceptional components
Ci and Cj), then, for one such edge, we choose the vertex s(Ci) (or vertices
s(Ci) and s(Cj)) to be u or v (or u and v) provided they are not already
chosen under I.

Let A be the multigraph
⋃

1≤i≤k A(Ci) with some edges of F adjoined, as
just described, and let B be the multigraph

⋃
1≤i≤k B(Ci) with the remaining

edges of F adjoined, again as just described. All vertices of A will have
degree r or r + 1, and all vertices of B will also have degree r or r + 1,
except for vertices s(C) in components B(C), where C is an exceptional
component and no edge of F has a vertex in the set V (C). In forming A ,
a component A(Ci) may be connected to a component A(Cj) by an edge of
F , so the number of components of A may be less than k. Note that some
of the components of A may be derived from exceptional components C of
H1 with no edges of F having any vertices in V (C); similarly for some of the
components of B.

At this point we have one of the three (r, r + 1)-multigraphs we aim to
construct from D2, F and H1, namely A .

Let B′′ be the set of components of B of the type B(C), where C is
an exceptional component of H1 with an odd number of edges which has no
vertex in common with any edge of F ; let B′ = B −B′′.

Let L be the set of all components of D2 ∪ B. Let L ′′ be a maximal
set, {L1, ..., Lt}, of components Li of D2 ∪B such that each Li contains at
least one of the components of B′′. Then L ′′ ⊆ L . Let L ′ = L −L ′′.

Let D′
2 be the restriction of D2 to the vertex set V (G) − V (

⋃
1≤i≤t Li).

Clearly V (D′
2) induces a set of components of B; we let B1 be this set of

components. Then B1 ⊆ B′, so B1 is an (r, r+1)-multigraph. We also note
that D′

2 is an (r, r + 1)-multigraph.
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Now consider the degrees of the vertices of L ′′. In order to have a vertex
v of degree 2r−1, the contribution from D2 would have to be r and from the
relevant B(C) the contribution would be r−1; there would be no contribution
from F . Then v = s(C) and B(C) ∈ B′′. As no edge of F is incident with
v, dD2(v) = r + 1, a contradiction. Thus the degrees of L ′′ are 2r, 2r + 1
or 2r + 2. The contribution of a vertex w ∈ B(C) − s(C) to dL ′′(w) from
B(C) is r and from D2 is r + 1 (for the same reason as for v = s(C)). Thus
dL ′′(w) = 2r + 1. Hence, by a by now well rehearsed argument, L ′′ is the
union of two (r, r + 1)-multigraphs. These, together with B1 and D′

2, give
the two further (r, r + 1)-factors we require.

7.3 The number of (r, r + 1)-factors

In Theorem 15 we showed how many (r, r+1)-factors an (r, r+1)-factorization
of a (d, d + 1)-simple graph can have. We are unable at present to give a
complete answer to the same question for (d, d+ 1)-multigraphs, but in this
section we give a partial answer to this question: we are able to give some of
the values of x for which a (d, d+1)-multigraph has an (r, r+1)-factorization
with x (r, r + 1)-factors.

In Section 7.2 we gave three lemmas all to the effect that, under certain
conditions, a (d, d+ 1)-multigraph has an (r, r + 1)-factorization. The argu-
ment in this section mainly involves generalizing these three lemmas. The
proofs of the generalizations of the three lemmas all just involve tinkering
with the various parameters, and in each case only affect the very beginning
of the proof. So the proofs we give here just explain the initial changes.
For the complete proofs, the reader needs to combine the discussion of the
parameters given here with the proofs of the lemmas given in Section 7.2.

The first generalization is of Lemma 32.

Lemma 35. Let d, r and k be positive integers with d and r both odd, and
with

d ≥ 2kr2 + 3kr − 3r − 4 + k .

Let

q =

⌊
d

r + 1

⌋
.

Then any (d, d + 1)-multigraph has an (r, r + 1)-factorization into q + k
(r, r + 1)-factors.

Proof. Let d + 1 = (r + 1)q + s + 2, where 0 ≤ s ≤ r. Since d and r are
both odd, it follows that s is even, so s < r, and so s+ 1 < r + 1. Thus the
equations d = (r + 1)q + s+ 1 and q =

⌊
d

r+1

⌋
are compatible.
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LetN andM be integers withN = q+s−kr+2 andM = 1
2
k(r+1)− 1

2
s−1.

Then (r + 1)N + 2rM = q(r + 1) + s+ 2 = d+ 1 and N + 2M = q + k.
Since

(r + 1)q + r ≥ (r + 1)q + s+ 1 = d ≥ 2kr2 + 3kr − 3r − 4 + k ,

it follows that
(r + 1)q ≥ (r + 1)(2kr + k − 4)

so that q ≥ 2kr + k − 4. Therefore

N − 2M = q + 2s− 2kr − k + 4
≥ q − 2kr − k + 4 (since s ≥ 0)
≥ 0 .

The proof now proceeds verbatim as in the proof of Lemma 32, and
produces an (r, r + 1)-factorization of G into q + k(= N + 2M) (r, r + 1)-
factors.

Generalizing Lemma 35 slightly, we have:

Theorem 36. Let d, r, k be positive integers, with d and r odd and with
d ≥ 2kr2+3kr−3r−4+k. Let q =

⌊
d

r+1

⌋
. Then any (d, d+1)-multigraph has

an (r, r+1)-factorization into x (r, r+1)-factors for each x, q+1 ≤ x ≤ q+k.

Proof. This follows from Lemma 35 since the function 2kr2 +3kr−3r−4+k
increases monotonically with k for k, r ≥ 1.

The next generalization is of Lemma 34.

Lemma 37. Let d, r and k be positive integers with d even, r odd, and with

d ≥ 2kr2 + 3kr + k − 2 .

Let

q =

⌊
d

r + 1

⌋
.

Then any (d, d + 1)-multigraph has an (r, r + 1)-factorization into q + k
(r, r + 1)-factors.

Proof. Let d = (r+1)q+ s, where 0 ≤ s ≤ r. Observe that this accords with
the equation q =

⌊
d

r+1

⌋
. Note that s is even, so in fact s < r.

Let N and M be integers with N = q+s−kr+1 and M = 1
2
k(r+1)− 1

2
s.

Then
(r + 1)(N − 1) + 2rM = q(r + 1) + s = d

and
N + 2M − 1 = q + k .
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Since

(r + 1)q + r − 1 ≥ (r + 1)q + s = d ≥ 2kr2 + 3kr + k − 2 ,

it follows that
(r + 1)q ≥ (r + 1)(2kr + k − 1) ,

so that
q ≥ 2kr + k − 1 .

Therefore
N − 2M = q − (2kr + k − 1) + 2s ≥ 2s ≥ 0 .

The proof now proceeds word for word as in the proof of Lemma 34,
and produces an (r, r + 1)-factorization of G into q + k (= N + 2m − 1)
(r, r + 1)-factors.

Generalizing this slightly, we have:

Lemma 38. Let d, r and k be positive integers with d even, r odd, and with
d ≥ 2kr2 +3kr+k−2. Let q =

⌊
d

r+1

⌋
. Then any (d, d+1)-multigraph has an

(r, r+ 1)-factorization into x (r, r+ 1)-factors for each x, q+ 1 ≤ x ≤ q+ k.

Proof. This follows from Lemma 37 since the function 2kr2 + 3kr + k − 2
increases monotonically with k for k, r ≥ 1.

As a consequence of Lemma 30, we have the following corollary.

Lemma 39. Let d, r and k be integers with k ≥ 0, r even, r ≥ 2 and
d ≥ 2r2(k + 1) + r(k + 1)− 1. Let q =

⌊
d
r

⌋
. Then any (d, d + 1)-multigraph

has an (r, r+1)-factorization into x (r, r+1)-factors for each x, q−k ≤ x ≤ q.

Proof. Let G be a (d, d+ 1)-multigraph. We may suppose that

d = (2r(k + 1) + y + k + 1− j)r + jr + z − 1 ,

where y ≥ 0, 1 ≤ z ≤ r and 0 ≤ j ≤ k. Then q = 2r(k + 1) + y + k + 1. Put
q∗ = 2r(k+1)+y+k+1−j and s∗ = jr+z. Then d = q∗r+s∗−1. Note that
q∗ ≥ 2s∗, so G has an (r, r+1)-factorization into q∗ = 2r(k+1)+y+k+1−j
(r, r + 1)-factors, by Lemma 30. Thus G has an (r, r + 1)-factorization into
x (r, r + 1)-factors for q − k ≤ x ≤ q.

It is convenient to re-express Lemma 39 in the following way.

Theorem 40. Let d, k, r be positive integers with r even and d ≥ 2r2k +
rk − 1. Let q =

⌊
d
r

⌋
− k. Then any (d, d + 1)-multigraph has an (r, r + 1)-

factorization into x (r, r + 1)-factors for each x, q + 1 ≤ x ≤ q + k.
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Proof. Let G be a (d, d + 1)-multigraph. From Lemma 39, with r, k, d
and q as in that lemma, it follows that if q′ =

⌊
d
r

⌋
− k − 1, then G has an

(r, r + 1)-factorization with x (r, r + 1)-factors for each x,

q′ + 1

(
=

⌊
d

r

⌋
− k = q − k

)
≤ x ≤ q′ + k + 1

(
=

⌊
d

r

⌋
= q

)
.

Putting k′ = k + 1, it follows that if k′ and r are positive integers with r
even and d ≥ 2r2k′ + rk′ − 1, and if q′ =

⌊
d
r

⌋
− k′, then G has an (r, r + 1)-

factorization with x (r, r+1)-factors, for each x, q′+1 ≤ x ≤ q′+k. Theorem
40 now follows by replacing q′ and k′ by q and k.

Collecting information from Theorems 35, 38 and 40 together, we obtain
the following theorem.

Theorem 41. Let d ≥ 2kr2 + 3kr + k + 2, where r ≥ 1 and k ≥ 1. Let

q =

{ ⌊
d

r+1

⌋
if r is odd,⌊

d
r

⌋
− k if r is even.

Then any (d, d+ 1)-multigraph has an (r, r+ 1)-factorization with (r, r+ 1)-
factors for each x, q + 1 ≤ x ≤ q + k.

Proof. This follows directly from Lemmas 35, 38 and Theorem 40 since

2kr2 + 3kr + k − 2
= max{2kr2 + 3kr − 3r − 4 + k, 2kr2 + 3kr + k − 2, 2kr2 + kr − 1} .

8 Postscript: equitable edge-colourings of

multigraphs

The close relationship between equitable edge-colourings and (r, r + 1)-fac-
torizations of (d, d + 1)-graphs is well-illustrated by the quick deduction of
Theorem 15(i) from Theorem 14. Theorem 14 in fact is a very nice result
about equitable colourings. Possibly Theorem 14 could be strengthened:

Conjecture 2. Let k be a positive integer and let G be a simple graph. If
the k-core of G is a forest, then G has an equitable colouring with k colours.

The best result about equitable colourings of pseudographs is due to
Häggkvist and Johansson [11]. It has proved to be extremely useful (see [8],
[12], [16]).
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Theorem 42. (Häggkvist and Johansson). Let ` be an even integer and let
G be a connected pseudograph whose degrees are `k − 2, `k − 1 or `k. Then
G has an equitable edge-colouring with k colours if and only if G has some
vertex of degree `k−1 or else the number of vertices of degree `k−2 is either
0 or at least 2, and not odd if k = 2.

Finally we note the following easy deduction from Theorem 41.

Theorem 43. Let G be a (d, d+1)-multigraph, where d ≥ 2kr2 +3kr+k+2,
and r ≥ 1, k ≥ 1. Then any (d, d + 1)-multigraph has an equitable edge-
colouring with x colours for each x satisfying{ ⌊

d
r+1

⌋
+ 1 ≤ x ≤

⌊
d

r+1

⌋
+ k if r is odd,⌊

d
r

⌋
− k + 1 ≤ x ≤

⌊
d
r

⌋
if r is even.

It is very likely that this result can be extended considerably.
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